![]() |
Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. This book explains and explores the principal techniques of Data Mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples & explanations of the algorithms given. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help the general
reader develop the necessary understanding to use commercial data mining
packages discriminatingly, as well as enabling the advanced reader or
academic researcher to understand or contribute to future technical advances
in the field. Each chapter has practical exercises to enable readers to
check their progress. A full glossary of technical terms used is included. |
There are no known errors in this edition (as at December 30th 2013).