
Computationally Efficient Induction of Classification

Rules with the PMCRI and J-PMCRI Frameworks

Frederic Stahl and Max Bramer

Frederic Stahl, Bournemouth University, School of Design, Engineering & Computing,

Poole House, Talbot Campus, BH12 5BB Poole, fstahl@bournemouth.ac.uk

Frederic Stahl, Max Bramer University of Portsmouth, School of Computing,

Buckingham Building, Lion Terrace, PO1 3HE Portsmouth, Max.Bramer@port.ac.uk

Abstract

In order to gain knowledge from large databases, scalable data mining tech-
nologies are needed. Data are captured on a large scale and thus databases
are increasing at a fast pace. This leads to the utilisation of parallel comput-
ing technologies in order to cope with large amounts of data. In the area of
classification rule induction, parallelisation of classification rules has focused
on the divide and conquer approach, also known as the Top Down Induction
of Decision Trees (TDIDT). An alternative approach to classification rule in-
duction is separate and conquer which has only recently been in the focus of
parallelisation. This work introduces and evaluates empirically a framework
for the parallel induction of classification rules, generated by members of the
Prism family of algorithms. All members of the Prism family of algorithms
follow the separate and conquer approach.

Keywords:
Parallel Computing, Parallel Rule Induction, Modular Classification Rule
Induction, PMCRI, J-PMCRI, Prism

1. Introduction

Many application areas are confronted with the problem of applying clas-
sification rule induction algorithms or data mining technologies in general
on very large datasets. Such application areas include bioinformatics and
chemistry which are confronted with large data sets, for example data gener-
ated in molecular dynamics simulation experiments. Researchers in this area

Preprint submitted to Knowledge-Based Systems April 10, 2012

need ways to manage, store and find complex relationships in the simulation
data [1]. The molecular dynamics datasets can reach 100s of gigabytes of
data for a single simulation and the community is just starting to be able
to store these massive amounts of simulation data [2]. A further area con-
fronted with massive amounts of data is astronomy. Here some databases
consist of terabytes of image data and are still growing as further data are
collected in relation to the GSC-II [3] and the still ongoing Sloan survey [4].
Large international business corporations collect and share customer trans-
actions in databases worldwide. Loosely speaking there is a significant need
for well scaling knowledge discovery and data mining technologies for mas-
sive datasets for both the scientific and business world. Parallelisation seems
to be one of the methods used in the data mining community to tackle the
problem of scalability in computational terms [33, 10, 21].

One of the major challenges in data mining is the induction of classifica-
tion rules on massive datasets. There are two general approaches to inducing
classification rules, the divide and conquer and the separate and conquer ap-
proaches. The induction of classification rules can be traced back to the 1960s
[5]. The divide and conquer approach induces classification rules in the form
of a decision tree by recursively splitting the classification problem [6]. Its
most popular representatives are the C4.5 [7] and C5.0 systems. Contrary to
decision trees the separate and conquer approach induces classification rules
directly that explain a part of the training data. Separate and conquer can be
traced back to the 1960s [8]. Parallel classification rule induction has focused
on the divide and conquer approach. A notable development here is SPRINT
[9]. [10] points out that in some cases SPRINT may suffer from workload
balancing issues and the ScalParC algorithm is proposed. However there are
virtually no approaches to scaling up the separate and conquer approach.

The Prism [11] family of algorithms follows the separate and conquer ap-
proach and addresses some of the shortcomings of decision trees, such as
the replicated subtree problem outlined in Section 2.1. More recent varia-
tions of Prism have demonstrated a similar classification accuracy compared
with decision trees and in some cases even outperform decision trees [17, 15].
An implementation of Prism is also available in the WEKA data mining
package[35]. This work proposes and evaluates the Parallel Modular Clas-
sification Rule Induction framework (PMCRI) which parallelises the Prism
family of algorithms, in order to computationally scale up Prism algorithms
to large datasets. PMCRI could potentially scale up further algorithms, that
follow the separate and conquer approach, to large datasets, however, it may

2

not be applicable to all of them.
In the PMCRI framework the parallelisation is aimed at a network of

computer workstations with the reasoning that modest sized organisations
may not have the financial strength to afford a supercomputer but will most
likely have a network of workstations in place which could be used to run
parallel algorithms. PMCRI partitions the training data according to the
features space and assigns equally sized subsets of the feature space to each
computing node. Each computing node processes its part of the feature space
and then cooperates with the other computing nodes in order to combine the
computed results to classification rules. The computational performance of
PMCRI is evaluated in terms of its execution time dependent on the num-
ber or data instances and the number of attributes/features. Furthermore
PMCRI is evaluated to show how much computational benefit is gained by
using p processors instead of one, dependent on the size of the datasets.

This paper is organised as follows: Section 2 introduces the Prism family
of algorithms and compares them with decision trees; Section 3 discusses the
PMCRI framework and Section 4 evaluates it. Section 5 introduces a version
of PMCRI that incorporates a pre-pruning facility (J-PMCRI) and evaluates
it in computational terms. Finally Section 6 closes the paper with a brief
summary, concluding remarks and an outlook to future work.

2. The Prism Family of Algorithms

The Prism family of algorithms is a representative of the ‘separate and
conquer’ approach outlined in Section 1 as opposed to the ‘divide and con-
quer’ approach.

2.1. The Replicated Subtree Problem

The ‘divide and conquer’ approach induces classification rules in the in-
termediate form of a tree whereas the ‘separate and conquer’ approach, and
thus the Prism family of algorithms, induces modular rules that do not nec-
essarily fit into a decision tree. Modular rules such as

IF A = 1 AND B = 1 THEN class = x

IF C = 1 AND D = 1 THEN class = x

will not fit into a decision tree as they have no attribute in common.
In order to represent them in a decision tree, additional logically redundant

3

rule terms would have to be added. This can result in complex and confusing
trees as Cendrowska shows in [11] and is also known as the replicated subtree
problem [12]. Cendrowska’s example illustrates the replicated subtree prob-
lem for the two rules listed above. She assumes that all attributes can have
3 possible values and only the two rules above classify for class x. Figure 1
shows the simplest possible decision tree expressing the two rules above, all
remaining classes that are not class x are labeled y.

Cendrowska’s claim that decision tree induction algorithms grow need-
lessly complex is vindicated by extracting the rules for class x from the tree
in Figure 1, which are:

IF A = 1 AND B = 1 THEN Class = x

IF A = 1 AND B = 2 AND C = 1 AND D = 1 THEN Class = x

IF A = 1 AND B = 3 AND C = 1 AND D = 1 THEN Class = x

IF A = 2 AND C = 1 AND D = 1 THEN Class = x

IF A = 3 AND C = 1 AND D = 1 THEN Class = x

Figure 1: Cendrowska’s replicated subtree example.

2.2. The ‘Separate and Conquer’ Approach

Algorithms induced by the ‘separate and conquer’ approach aim to avoid
the replicated subtree problem by avoiding the induction of redundant rule
terms just for the representation in a decision tree. The basic ‘separate and
conquer’ approach can be described as follows:

While Stopping Criterion not satisfied{

4

rule = Learn_Rule;

Remove all data instances covered from Rule;

add rule to the rule set;

}

The Learn Rule procedure (or specialisation process) induces the ‘best’
rule for the current subset of the training set by searching for the best con-
junction of attribute-value pairs (rule terms). The perception of ‘best’ de-
pends on the heuristic used to measure the goodness of the rule, for example
its coverage or predictive accuracy. The Learn Rule procedure can be compu-
tationally very expensive, especially if all possible conjunctions of all possible
rule terms have to be considered. After a rule is induced, all examples that
are covered by that rule are deleted and the next rule is induced using the
remaining examples until a Stopping Citerion is fulfilled. Different ‘separate
and conquer’ algorithms implement different methods to reduce the search
space of the Learn Rule procedure and the Stopping Criterion. Some ex-
amples of algorithms that follow the ‘separate and conquer’ approach are
[11, 36, 8, 37].

2.3. The Prism Approach

In the Prism approach, first a Target Class (TC), for which a rule is
induced, is selected. Prism then uses an information theoretic approach [11]
based on the probability with which a rule covers the TC in the current
subset of the training data to specialise the rule. Once a rule term is added
to the rule, a further rule term is induced only on the subset of the training
data, that is covered by all the rule terms induced so far. This is done until
the rule currently being induced only covers instances that match the TC. In
Cendrowska’s original Prism algorithm the TC is selected at the beginning by
the user and only rules for the TC are induced. Alternatively the algorithm
can be given a list of possible classes and is executed for each class in turn.
Bramer’s PrismTCS (Target Class Smallest first) algorithm [13] sets the TC
for each new rule to be induced to the current minority class. Another
member of the Prism family is PrismTC which sets the TC for each new
rule to be induced to the current majority class. Unpublished experiments
by Bramer revealed that PrismTC does not compete well with Cendrowska’s
original Prism and Bramer’s PrismTCS. The advantage of PrismTCS is that
it needs fewer iterations than the original Prism while maintaining a similar
level of predictive accuracy and thus has a better computational performance
[14]. The stopping criterion of Prism is to stop when there are either no more

5

examples left or the remaining examples all belong to the same class. The
basic PrismTCS algorithm is outlined below where Ax is a possible attribute-
value pair and D is the training dataset and i the minority class.

Step 1: D’ = D;

Step 2: Calculate for each Ax in D’ p(class = i| Ax);

Step 3: Select the Ax with the maximum p(class = i| Ax)

and delete all instances from D’ that do

not match Ax;

Step 4: Repeat 2 to 3 until D’ only contains

instances of classification i.

The induced rule then has as its antecedent

the conjunction of all the selected Ax,

with consequent class=i;

Step 5: Delete all instances from D that cover the

induced rule;

Step 6: IF(D does not contain any instances of class i){

IF(D does not contain i){

recalculate minority class i;

}

GO TO Step 1;

}

All methods outlined in this paper can be applied to any member of the
Prism family, however we will focus here on the more popular and computa-
tionally more efficient PrismTCS algorithm.

2.3.1. Dealing with Clashes in Prism

According to [15] the best way to deal with clashes, which is also im-
plemented in the Inducer data mining software [15, 13], is to check if the
clashing instances have the TC as the majority class. If so, then the rule is
taken into the rule set, otherwise the rule is discarded and the instances in
the clash set that match the TC are deleted.

2.4. Dealing with Continuous Attributes in Prism

One way to deal with continuous attributes is discretisation of attribute
values using techniques such as ChiMerge [16] before Prism is applied. In
step 2 in the pseudocode above, Inducer calculates for each attribute value v
(if attribute A is continuous) two tests. The two tests are the probabilities
p(class = i | Ax ≥ v) and p(class = i | Ax < v). The test with the highest
probability for attribute A is selected and compared with those from the
other attributes.

6

3. PMCRI: A Parallel Modular Classification Rule Induction Frame-

work

This section reviews the Parallel Modular Classification Rule Induction
(PMCRI) framework for inducing classification rules in parallel using the
Prism family of algorithms. Any algorithm of the Prism family can be par-
allelised using PMCRI. Using PMCRI will produce exactly the same rules
as the serial version of the parallelised Prism algorithm would, only PMCRI
is able to cope computationally with much larger data volumes. A version
of PMCRI that incorporates rule pruning, J-PMCRI will be introduced in
Section 5.

Figure 2: Cooperating Data Mining Model.

The scope of the research described in this paper is to derive a method-
ology that helps modest sized organisations to harvest the computational
power of their standalone workstations interconnected in a network in order
to avoid having to purchase expensive parallel computers. As Prism’s com-
putational complexity is directly dependent on the amount of data [19], data
parallelisation is used for the PRISM framework. Data parallelisation can be
achieved by partitioning the data into subsets and distributing these subsets
evenly over n machines in a network of n separate computers.

The PMCRI framework is broadly based on the Cooperating Data Mining
Model (CDM) [20] illustrated in Figure 2. CDM describes in general an
approach for distributed and parallel data mining, it can be divided into
three basic steps; a sample selection procedure, learning local concepts and

7

combining local concepts using a combining procedure into a final concept
description.

• sample selection procedure: In the sample selection procedure samples
S1,..., Sn of the training data are taken and distributed over n machines.
How the training data are partitioned is not further specified. For
example, the samples may contain a subset of the instances or a subset
of the attributes.

• learning local concepts : On each of the n machines there is a learning
algorithm L running that learns a local concept out of the data samples
locally stored on each machine. In general each L has a local view of
the search space reflected by the data it holds in the memory. A global
view of the search space can be obtained by communication between
algorithms L1,...,Ln. This can be done by exchanging parts of the
training data or information about the training data. Where the latter
is preferred, as information about data is usually smaller in size than
the data itself and thus consumes less bandwidth. Subsequently each
L will derive a concept description C from the locally stored data and
the information that has been exchanged with other Ls.

• combining procedure: Eventually all Cs derived from all local Ls are
combined into a final concept description Cf . How this is done depends
on the underlying learning algorithm and its implementation.

3.1. The Sample Selection Procedure

The sample selection procedure is crucial for achieving optimal workload
balancing. For PMCRI a similar approach to that in the SPRINT [9] al-
gorithm has been developed. The training data are partitioned by building
attribute lists for each attribute of the structure <record id, attribute value,
class value>.

The left-hand side of Figure 3 shows how attribute lists are built in PM-
CRI. All lists are sorted and can be kept sorted during the whole duration
of the algorithm’s execution as identifiers (ids) are added to each list entry
that allow the reconstruction of whole data records. When calculating the
highest value of p(class = i | Ax ≥ v) or p(class = i | Ax < v) for each
continuous attribute A at step 2 in the algorithm given in Section 2 it is
essential to use attribute values that have been sorted into numerical order.
As pointed out in [21], the use of attribute lists and pre-sorting in the serial

8

Figure 3: The left hand side shows how sorted attribute lists are built and the right hand

side shows how list records, in this case records with the ids 1 and 3, are removed in Prism.

versions of Prism algorithms gives a substantial improvement in runtimes
over earlier implementations in which each continuous attribute needed to
be sorted afresh as each new rule term was induced. As Prism removes data
instances that are not covered by previously induced rule terms (see step 3
in the PrismTCS algorithm in Section 2), the attribute list entries will have
to be removed accordingly. For example in the data used in Figure 3, if
Prism finds a rule term (salary ≥ 60.4) for class G then Prism would remove
the list entries matching ids 1 and 3 from all attribute lists as they are not
covered by (salary ≥ 60.4) in the attribute list ‘salary’.

What is important to note is that after removing the list entries for un-
covered instances, each attribute list has the same number of list entries and
is still sorted. Thus an equal workload balance during the whole duration of
Prism’s execution in PMCRI can be achieved by distributing the attribute
lists evenly over n computers. This is not the case for the SPRINT algo-
rithm as SPRINT partitions each sorted attribute list into n equal parts
and thus distributes each single attribute list evenly over n computers or
processors. Compared with PMCRI, SPRINT may have a perfect workload
balance at the beginning but the workload is likely to become imbalanced
during SPRINT’s execution [10]. In the PMCRI lists distribution strategy, a
slightly imbalanced workload at the beginning may occur if numberofattributes

numberofComputers

is not an integer, however it is accepted as the workload balance will stay
constant during the whole duration of Prism’s execution.

9

3.2. Parallelising a System of Rule Term Learners Using a Distributed Black-
board Approach

The training data are distributed over p processors in the form of com-
plete attribute lists. When this paper mentions processors in the context of
PMCRI or J-PMCRI, then in fact workstations that have their own private
memory are meant. The learner that each processor has to run for the Prism
algorithm in order to derive rules is described below in five steps. However
these steps can be easily adapted for any member of the Prism family.

Step 1: Each processor induces rule terms ‘locally’ on attribute lists it
holds in memory by calculating all the conditional probabilities for the target
class in all the attribute lists and taking the largest one. If there is a tie break,
the rule term that covers the highest count of the target class is selected as
the locally best rule term. The processors now need to communicate in order
to find out which processor induced the globally best rule term using the
probabilities and target class counts.

Step 2: After finding the best rule term, each processor needs to delete
all attribute list records that are not covered by the globally best rule term.
In order to do so all processors need to retrieve the ids from the processor
that induced the globally best rule term.

Step 3: A rule term has been induced and Prism now needs to check
whether the rule is completed or not. Each processor checks this indepen-
dently. If the local attribute lists only contain the target class, then the
rule is finished and the processor continues with step 4, otherwise the rule is
incomplete and the processor jumps back to step 1.

Step 4: The current rule is completed and Prism needs to restore the
data and delete all instances that are covered by the rules induced so far.
For each processor the ids of the list records left after the final rule term has
been induced are the ones that are covered by the completed rule. These ids
are accumulated and remembered by the processor. The original attribute
lists are restored and list records matching the accumulated ids are deleted.

Step 5: Each processor checks if there is still more than one list record
left in each attribute list, and each of the attribute lists comprises records
associated with more than just one class, then the next rule is induced,
otherwise the stopping criterion of Prism is fulfilled and the processor will
stop and exit.

Steps 1 to 5 show the basic operations a processor has to execute in
order to derive Prism rules. Please note that the only communication takes

10

place in step 1 for communicating rule term properties and in step 2 for
communicating the ‘globally best’ rule term covered ids. The learner that
induced the globally best rule term only needs the rule term and the attribute
lists from which it was derived in order to derive the ids, that match attribute
list records, on all processors that are covered by the rule term. Thus it is
not necessary to communicate the actual rule terms to all processors. The
globally best rule term is retained in order to be able to extract the overall
rule eventually and all other rule terms will be deleted. In general each
processor can act independently over most of the tasks involved in inducing
Prism rules.

Below is the pseudocode of a learning algorithm for a processor for steps
1 to 5 above. The parts that involve communication are numbered (1), (2)
and (3). The pseudocode describes how rules for one target class are induced:

//Global Variables

TargetClass _tc;

List _rules;

Rule _rule;

List _fromRulesCoveredIds;

int[] _toDeleteIds;

while(while attribute lists are not empty and contain _tc){

_rule = new Rule();

while((local lists contain tc)AND

(_tc is not the only class)){

induce locally best rule term t;

exchange information about t with

all other processors (1);

if(t is globally best rule term){

_rule.append(t);

_toDeleteIds = Generate by t uncovered ids;

communicate _toDeleteIds to

remaining processors (2);

} else{

retrieve _toDeleteIds from winning processor (3);

}

delete all list instances matching _toDeleteIds;

clear _toDeleteIds;

}

_fromRulesCoveredIds.add(ids present in

current attribute lists);

_rules.add(rule);

restore all attribute lists to their initial size;

delete all instances from all attribute lists that

match ids in _fromRulesCoveredIds;

}

In the pseudocode above, the processor that induced the globally best rule
term is referred to as the ‘winning processor’. Also the pseudocode above can
easily be adapted to any other version of Prism such as PrismTCS. In the
case of PrismTCS there would be an additional procedure implemented that

11

counts the numbers of all classes that are currently presented in one of the
attribute lists and sets the target class TC to the minority class. PrismTC
could also be employed similarly to PrismTCS by just setting the majority
class to TC.

A blackboard approach is used in the PMCRI framework for communica-
tion amongst learner algorithms which were described in the above. Black-
board systems are often explained with the metaphor of specialists or experts
that are gathered around a blackboard and are confronted with a common
problem to solve. The experts may have knowledge of different domains.
The blackboard is used by the experts as an information space to derive a
common solution. Each expert can observe the blackboard for knowledge or
partial solutions that might help him to derive further parts of the solution
[22], which the expert writes on the blackboard. In the blackboard system
terminology, an expert is called a Knowledge Source (KS). Blackboard sys-
tems are generally useful for prototyping an application as they can easily
be extended by further KSs [23]. Therefore we use a blackboard system to
evaluate PMCRI.

In PMCRI, every learning algorithm, as described above, is a certain
implementation of a KS that can adapt, interact and evolve within the en-
vironment in which it exists. Thus the terms learner and KS may be used
interchangeably in the context of PMCRI. In PMCRI each learner KS is exe-
cuted on a different processor. The specialist area of expertise is determined
by the attribute list it uses in order to derive rule terms. A learner KS evolves
by communication with other learners: by exchanging information about lo-
cally induced rule terms such as the rule term’s conditional probability and
by exchanging ids that are covered or uncovered by the induced rule term.
Each learner KS will subsequently react on receiving such information by
manipulating its local specialist knowledge encoded in the local attribute
lists.

The usage of a blackboard system allows the structuring of communica-
tion as well as the information that is communicated logically by partition-
ing the blackboard in logically different panels or partitions. These panels
or partitions can correspond to different levels of problem solution and thus
simplify the management of the problem solving process [24].

The blackboard architecture derived for PMCRI is based on a blackboard
server approach supporting asynchronous communication and the partition-
ing of the blackboard in several panels. Asynchronous communication is
important in order to allow the concurrent execution of KSs while commu-

12

Figure 4: PMCRI’s communication pattern using a distributed blackboard architecture.

nicating. The communication pattern of PMCRI is depicted in Figure 4. It
consists of a blackboard server that is partitioned into two panels: the ‘Local
Rule Term Partition’ and the ‘Global Information Partition’ and k learner
KS machines. The knowledge of the KS machines is determined by the subset
of the attribute lists they hold in memory on which they are able to induce
the locally best rule term.

The moderator program in Figure 4 is a link between both partitions. It
reads information from the ‘local rule term partition’ and writes information
on to the ‘global information partition’. The moderator program is in fact
a separate KS, however it is hosted on the same machine as the blackboard
system as it has very little computation to perform.

Learner KSs monitor the ‘global information partition’ and write informa-
tion on the ‘global’ and ‘local information partitions’. From the implemen-
tation point of view, the learner KS listening to the blackboard partitions
would require constant polling and so constrain the blackboard’s commu-
nication. For this reason the blackboard notifies KSs whenever something
changes on the blackboard. Thus the KSs will only read the blackboard if
there is new information available.

Basically the learner KS machines use the learner algorithm described in
this section in order to derive the locally best rule term. It will be described
below how the three lines of code in the learner pseudocode that involve
communication are handled using the blackboard outlined in Figure 4.

When the first communication line in the learner pseudocode (1) is reached:

exchange information about t with all other processors (1);

the information about the rule term induced needs to be shared. For doing

13

that the learner KS will write the conditional probability and the target class
count with which the rule term was induced together with its own name or
identifier on the ‘local rule term partition’ on the blackboard.

The moderator will read the contents of the ‘local rule term partition’.
Once all learner KSs have contributed their locally best rule term informa-
tion, the moderator will compare all the information in order to identify
the learner KS that has induced the globally best rule term. This can be
described by the pseudocode below. The method or function ‘updateModer-
ator’ is called whenever information about a new rule term is written on the
blackboard:

//Global Variables

int _numberOfLearnerKS;

double _bestProbability = 0;

int _bestTargetClassCount = 0;

String _bestLearnerKSID;

int _counter = 0;

// Method called when information about a new rule

// term is written on the blackboard.

updateModerator(String name, double

probability, double tc_count){

_counter++;

IF((probability>_bestProbability)OR

((probability==_bestProbability)AND

(tc_count>_bestTargetClassCount))){

_bestProbability = probability;

_bestTargetClassCount = tc_count;

_bestLearnerKSID = name;

}

IF(_counter==_numberOfLearnerKS){

write _bestLearnerKSID on Global Information Partition;

_bestProbability = 0;

_bestTargetClassCount = 0;

_counter = 0;

}

}

From the learner KS’s point of view, each learner KS will be informed
that the ‘global information partition’ has changed and will read the infor-
mation, which would be the bestLearnerKSID. If bestLearnerKSID matches
the local learner KS’s id then the learner KS has induced the globally best
rule term. If it does not match the learner KS’s id then the learner KS has
only induced a locally best rule term. In both cases, the learner KS would
continue accordingly as described in the learner KS’s pseudocode after com-
munication step (1).

14

The moderator is only involved in communication step (1). Next the
learner KS machines will reach communication steps (2) and (3). The ‘win-
ning’ learner KS that induced the globally best rule term will reach step (2)
and the remaining learner KSs will reach step (3). In steps (2) and (3) the
learner KSs will exchange information directly via the blackboard (using the
‘global information partition’). At this stage only the ‘winning’ learner KS is
able to derive the indices of the data instances that are uncovered by the last
rule term induced. The remaining learner KSs will wait for the information
to be available on the ‘global information partition’. The ‘winning’ learner
KS will provide this information by writing it on the ‘global information
partition’. From there on, the learner KSs can work autonomously until the
next locally best rule term is induced and the whole communication pattern
repeats.

3.3. The Combining Procedure

Regarding the basic learner pseudocode from Section 3.2, we can see that
each learner builds a collection of rules. Each learner KS builds rule terms
for the same rule simultaneously except that it only appends the rule terms
that were locally induced and are confirmed to be globally the best ones in
each iteration. Thus for each rule each learner KS will have a collection of
rule terms, but will not have all rule terms that belong to the rule. In this
sense the concept description induced by each learner is a part of the overall
classifier.

Figure 5: The Combining Procedure of PMCRI.

15

In the learner pseudocode all rules are stored in a list together with their
target class, which is in the order in which the rules were induced. The com-
bining procedure example highlighted in Figure 5 comprises three learner KS
machines that induced six ‘part-rules’. The part rules are listed in the learner
KS’s memory and are associated with the target class they were induced for.
In order to create the final rule, the combining procedure simply collects all
‘part rules’ for each rule and appends the rule terms of the ‘part rules’ using
‘AND’ operators. It is important to note that the PMCRI framework repro-
duces exactly the same classifier as the serial version of the Prism algorithm
would [14].

3.4. Dealing with Heterogeneous Hardware and Hardware Faults

Overloading the memory of PMCRI will lead the operating systems of
each KS machine to buffer parts of the data onto the hard disk and thus
would slow PMCRI down due to I/O overheads. In cases where there are
fast processors but very little memory it is preferred not to exceed the mem-
ory capacity rather than to harvest the processors’ power fully. A slight
workload imbalance due to the fact that only complete attribute lists are
used is accepted.

A hardware failure in PMCRI could be dealt with in two different ways.
The first is to execute the rule term calculation and manipulation of at-
tribute lists redundantly on two or more KS machines, which is also done
in distributed data analysis systems such as Hadoop [34] and MapReduce.
However if there are not enough computers available, then a failure can be
recognised by the blackboard if the submission of the KS machines rule term
probability times out. In this case a new KS machine could be started, load-
ing the attribute lists of the failed KS machine into its memory. According
to Section 3.2 in steps 2 and 3 of the pseudocode description of the learning
algorithm, after the induction of each globally best rule term, all KSs ex-
change information about which attribute list records are uncovered by the
globally best rule term and delete the matching attribute list records. Thus
all KSs have the attribute list records with the same ids, hence the newly
started KS can load its attribute lists and retrieve the ids of the list records
from any other KS, keep matching list records in its memory and delete the
remaining list records.

16

4. A Case Study of PrismTCS Parallelised Using the PMCRI Frame-

work

This section examines PMCRI empirically in computational terms.

4.1. System Setup

For evaluation purposes a test implementation of the PrismTCS algo-
rithm has been developed and the diabetes and yeast datasets from the UCI
repository [25] were used. To create a larger and thus more challenging work-
load for PMCRI, each dataset was appended to itself in either a horizontal
or a vertical direction. The basic diabetes and yeast datasets each comprise
roughly 100,000 data records and 48 attributes. In order to increase the num-
ber of attributes the dataset is appended to itself in a horizontal direction,
which is referred to as landscape format. In order to increase the number
of data instances the dataset is appended to itself in a vertical direction,
which is referred to as portrait format. The reason for replicating the whole
dataset is that if the data are sampled, the number of rule terms and rules
induced varies. In order to determine the effect of sorting with respect to
the size of the data it is required that the same pattern is induced each time,
which is the case if the data are appended to itself. Please note that in these
experiments PMCRI’s learning algorithm is based on PrismTCS and pro-
duces exactly the same rules as the serial version of PrismTCS would induce.
Therefore there is no concern with issues relating to the comparative quality
of rules generated by different algorithms. As all datasets were based on
either the yeast or the diabetes dataset, the induced classifiers were identical
for all dataset sizes based on yeast and also for all dataset sizes based on di-
abetes. In particular, the classifier induced on yeast produces 467 rules and
the classifier on diabetes 110 rules. The machines used for all experiments in
this section had a CPU speed of 2.8 GHz and a memory of 1 GB, of which
800 MB is allocated to PMCRI, the rest is allocated to the operating system.
The operating system used was XUbuntu. In general, when this paper men-
tions processors or machines, learner KS machines are meant. All runtimes
recorded for PMCRI comprise the time needed to transfer the training data
to each learner KS from a single machine. For the serial version of PrismTCS
there is no transfer of data involved.

17

4.2. Scalability with Respect to the Training Data Size and Capability Barri-
ers of PMCRI

In order to investigate the scalability of PMCRI, with respect to the
training data size, runtimes of a fixed processor (learner KS machine) config-
uration on an increasing workload have been examined. In this paper these
experiments are called size up experiments. In general, achieving a linear size
up is desired, meaning that the runtime is a linear function of the data set
size. Usually the number of rules and rule terms induced would influence the
workload. However, as the training data used in this section are appended to
itself, the number of rules and rule terms induced is fixed for all sizes of the
yeast and diabetes datasets in this case study. The fact that the number of
rules and rule terms is fixed allows the examination of PMCRI’s scalability
with respect to the training data size. The term capability barriers in this
work refers to the maximum workload that the system could cope with for a
given number of processors in terms of the training data size in the form of
number of instances or attributes. The maximum workload is limited by the
amount of data that can be loaded in total into the memory of the network.

Figure 6 shows the runtimes plotted versus the number of training in-
stances for both the yeast and diabetes datasets in portrait format using a
different number of processors. In general a linear behaviour for all config-
urations on both datasets can be observed. The fact that the runtimes on
the yeast dataset are generally longer than on the diabetes dataset can be
explained by the fact that the yeast data generate more rules than diabetes;
467 versus 110 rules. The linear regression equations below support a linear
size up behaviour of PMCRI on the yeast dataset, where x is the relative
number of training instances and y the relative runtime in ms:

Serial P rismTCS(yeast) : y = 1.084x (R2 = 0.997)
2 processors(yeast) : y = 0.992x (R2 = 0.995)
4 processors(yeast) : y = 0.728x (R2 = 0.999)
6 processors(yeast) : y = 0.515x (R2 = 0.998)
8 processors(yeast) : y = 0.408x (R2 = 0.998)
10 processors(yeast) : y = 0.336x (R2 = 0.998)
12 processors(yeast) : y = 0.267x (R2 = 0.997)

Serial P rismTCS(diabetes) : y = 1.056x (R2 = 0.998)
2 processors(diabetes) : y = 0.887x (R2 = 0.999)
4 processors(diabetes) : y = 0.675x (R2 = 0.998)
6 processors(diabetes) : y = 0.483x (R2 = 0.997)
8 processors(diabetes) : y = 0.389x (R2 = 0.994)
10 processors(diabetes) : y = 0.322x (R2 = 0.996)
12 processors(diabetes) : y = 0.262x (R2 = 0.992)

18

Figure 6: Capability Barriers of PMCRI and PrismTCS with respect to the number of

training instances.

What can also be extracted from Figure 6 are the capability barriers
of PMCRI. For a particular configuration of PMCRI the capability barrier
is equivalent to the number of training instances the framework can cope
with, meaning how many attribute lists can be loaded into the collective
memory. The capability barrier of PrismTCS on one processor was reached
after roughly 900,000 data instances. For PMCRI with two machines it was
reached after roughly 1,600,000 data instances and for PMCRI with four
machines after 3,200,000 instances, both for yeast and for diabetes in all
cases. In PMCRI, the capability barriers can be widened by adding more
machines and thus more memory. As Figure 6 shows, in PMCRI, if the
amount of processors, and thus workstations with their own local memory,
is doubled then the capability barriers also double meaning PMCRI will be

19

able to load double the amount of training data.
A similar experiment series as for Figure 6 is repeated on the yeast and

diabetes datasets but this time the data were growing towards landscape
format.

Figure 7 shows the runtimes plotted versus the number of attributes for
the yeast and diabetes datasets in landscape format using different numbers
of processors.

Figure 7: Capability Barriers of PMCRI and PrismTCS with respect to the number of

attributes.

Serial P rismTCS(yeast) : y = 0.911x(R2 = 0.999)
2 processors(yeast) : y = 0.751x(R2 = 0.998)
4 processors(yeast) : y = 0.489x(R2 = 0.997)
6 processors(yeast) : y = 0.380 (R2 = 0.992)
8 processors(yeast) : y = 0.238x (R2 = 0.992)

20

10 processors(yeast) : y = 0.167x (R2 = 0.989)
12 processors(yeast) : y = 0.121x (R2 = 0.979)

Serial P rismTCS(diabetes) : y = 0.914x (R2 = 0.999)
2 processors(diabetes) : y = 0.766x (R2 = 0.999)
4 processors(diabetes) : y = 0.551x (R2 = 0.997)
6 processors(diabetes) : y = 0.438x (R2 = 0.995)
8 processors(diabetes) : y = 0.298x (R2 = 0.996)
10 processors(diabetes) : y = 0.197x (R2 = 0.990)
12 processors(diabetes) : y = 0.135x (R2 = 0.998)

Again, a closer look has been taken at the equations. Once more, a size
up behaviour better than the theoretical linear one can be observed. We
also observe the same behaviour for the capability barriers as for portrait
data. We can see that the capability barrier of PrismTCS with PMCRI with
2 processors was reached after 768 attribute lists and for PrismTCS with
PMCRI with four processors after roughly 1,488 attribute lists and so on.

4.3. Speed up of PMCRI

Standard metrics to evaluate a parallel algorithm or a parallel architecture
are the speed up factors and the efficiency [26, 27]. With the speed up factors
one can compare by how much the parallel version of an algorithm is faster
using p processors than with 1 processor.

Sp =
R1

Rp

(1)

Formula 1 represents the speed up factors Sp. R1 is the runtime of the
algorithm on a single machine and Rp is the runtime on p machines. In the
ideal case, the speed up factors are the same as the number of processors used.
For example, if two processors were used then a speed up factor of 2 means
that we gained 100% benefit from using an additional processor [28]. In
reality, the speed up factor will be below the number of processors for various
reasons, such as a communication overhead imposed by each processor which
would be, in our case, caused by communication of information about rule
terms and indices of list records. Then there is also the synchronisation
overhead. For example, in the case of PMCRI, if a processor has induced the
locally best rule term it has to wait for the remaining machines to finish their
rule term induction in order to receive or derive the indices that are covered
by the globally best rule term. However, as stated in Section 3.1, the relative
workloads of each processor stay constant; thus a synchronisation overhead
will not be overwhelming.

21

Figure 8 shows the speed up factors of PrismTCS parallelised using PM-
CRI for different sizes of the yeast dataset (upper graph) and the diabetes
dataset (lower graph), both in portrait format. Configurations of 1, 2, 4, 6, 8,
10 and 12 processors were used. It can be observed that, for a fixed dataset
size with an increase of the number of processors, the speed up factors also
increase, until a maximum speed up factor is reached and start to decrease
again. It can also be observed that the larger the dataset size, the more
processors are needed in order to reach the maximum speed up. For dia-
betes with 103,680 data records the maximum is reached with 4 processors.
For diabetes with 311,040 records the maximum is reached with 8 machines.
For the third and fourth data series of 622,080 and 933,120 records respec-
tively, the maximum was not reached with all processors available. A similar
behaviour can be observed for the speed up factors of the yeast dataset.

All datasets for the portrait format comprised 48 attributes and thus
48 attribute lists. It is not possible to distribute 48 attributes evenly on a
10 processor configuration. This is the slight downside of using complete
attribute lists as already discussed in Section 3.1. However, in this case, the
attribute lists have been distributed ‘as evenly as possible’ by assigning to 8
of the learner KS machines 5 attribute lists and to 2 machines only 4, which
adds up to 48 attribute lists. However, as it can be seen in Figure 8, this
workload imbalance is almost imperceptible.

Loosely speaking, regarding the speed up factors, it can be observed that
the larger the data in terms of instances the more PMCRI benefits from
using additional processors. In general, the speed up behaviour observed in
this section is a normal behaviour for most parallel algorithms that need to
communicate in order to share intermediate results or information [26].

Figure 9 shows the speed up factors of PrismTCS parallelised using PM-
CRI for different sizes of the yeast dataset (upper graph) and the diabetes
dataset (lower graph), both in landscape format. Again, as for portrait for-
mat, configurations of 1, 2, 4, 6, 8, 10 and 12 processors were used.

The same tendency as for portrait data can be observed, which is that for
a fixed data size an increasing number of processors also increases the speed
up factors. The speed up factors again reach a maximum and then start to
decrease again. Also, the larger the number of attributes, the more processors
are required to reach the maximum speed up. For diabetes with 48 attributes
the maximum is reached with 4 processors. For diabetes with 144 attributes
the maximum is reached with 8 machines. For the third data series of 288
attributes the maximum seems to be reached with 12 machines however the

22

Figure 8: Speed up factors of PMCRI using PrismTCS on the yeast and diabetes dataset

in portrait format.

maximum was not reached with all processors available for diabetes with 432
attributes. A similar behaviour can be observed for the speed up factors of
the yeast dataset.

Again the speed up behaviour observed in this section is a normal be-
haviour, as for most parallel algorithms that need to communicate in order
to share intermediate results or information.

4.4. Communication Efficiency of PMCRI

Efficiency is a performance metric represented by Formula 2:

23

Figure 9: Speed up factors of PMCRI using PrismTCS on the yeast and diabetes dataset

in landscape format.

Ep =
Sp

p
(1)

Sp is the speed up factor divided by the number of processors p. The
efficiency ranges from 0 to 1. The efficiency is equivalent to the percentage
with which PMCRI profits from each processor. In other words, the efficiency
is the amount of speed up achieved per processor [28].

Comparing the efficiencies from portrait and landscape data for yeast, 48
attributes for landscape are equivalent in size to 103,880 instances in portrait
format, 144 attributes in landscape are equivalent in size to 311,640 instances
and so on for yeast and analogously for diabetes. Now the efficiencies for the
yeast data in portrait and landscape format are plotted in the top half of
Figure 10 and the efficiencies for the diabetes data in portrait and landscape
format are plotted in the bottom half of Figure 10.

24

Figure 10: Efficiencies comparison of the data growing towards landscape and portrait

format. The efficiencies for the yeast data are plotted in the top half of the figure and the

efficiencies for the diabetes data are plotted in the bottom half of the figure.

Efficiency series for portrait format are plotted in solid lines whereas the
ones for landscape format are plotted in dashed lines. For both, the diabetes

25

and the yeast data, it can be observed that the efficiencies for data in portrait
format compared with the data in the equivalently-sized landscape format
are always lower. By ’equivalently-sized’ here is meant that the number of
attribute values in the dataset, i.e. the number of instances multiplied by the
number of attributes, is the same in both cases. For the yeast data, a dataset
of 48 attributes is equivalent in size to one of 103880 instances, one of 144
attributes is equivalent to one of 311640 instances, one of 288 attributes is
equivalent to 623280 instances and one of 432 attributes is equivalent to one
of 934920 instances. And for the diabetes data, a dataset of 48 attributes
is equivalent in size to one of 103680 instances, one of 144 attributes is
equivalent to one of 311040 instances, one of 288 attributes is equivalent to
622080 instances and one of 432 attributes is equivalent to one of 933120
instances.

The higher efficiency of PMCRI on landscape formatted data, compared
with portrait formatted data, can be explained by the fact that the number
of indices of list records, that are covered or uncovered by the currently
induced rule term, increases with the number of data records, but not with
the number of attributes. Hence the more data records there are the more
indices need to be communicated between the KSs and the blackboard. This
is not the case for landscape formatted data.

5. J-PMCRI Case Study: PMCRI Incorporating J-pruning

Like decision tree induction algorithms, Prism also tends to have a higher
potential to overfit on larger training datasets than on smaller ones. In
previous work about parallel decision tree induction, pruning, in general, has
been neglected as it seems to be computationally inexpensive when pruning
is applied after the classifier has been induced. However, the results in [14]
strongly suggest that pre-pruning would be a valuable asset in reducing the
runtime of the classifier induction. This is because the fewer rule terms there
are to be induced, the fewer iterations to derive the rule set are needed. This
Section extends the PMCRI framework by a J-pruning facility that does the
pruning during the classifier’s induction.

5.1. J-PMCRI: A J-pruning Facility for PMCRI

J-pruning, a pre-pruning method has been developed for the Prism family
of algorithms as well as for decision tree induction, in order to prevent Prism
classifiers from overfitting on the training data [17]. J-pruning shows good

26

results on both Prism and decision tree induction algorithms [17, 32]. It
is based on an information theoretic measure, the J-measure [18], that is
used to quantify the theoretical information content of a rule. J-pruning
is also interesting for computational efficiency considerations as it reduces
the number of rules and rule terms induced considerably, as pointed out in
[14, 19]. The theoretical average information content of a rule of the form IF
Y = y THEN X = x can be measured in bits and is denoted by J(X,Y=y)
[18].

J(X ; Y = y) = p(y) · j(X ; Y = y) (1)

Equation (1) shows the product of the probability with which the left
hand side of the rule will occur p(y) and the j-measure j(X ; Y = y) (with a
lower case j), also called cross entropy, which measures the goodness-of-fit of
a rule and is defined in Equation (2):

j(X ; Y = y) = p(x | y) · log2(
p(x|y)
p(x)

)+ (1− p(x | y)) · log2(
(1−p(x|y))
(1−p(x))

) (2)

Bramer bases J-pruning on the assumption that a high J-value of a clas-
sification rule also results in a high predictive accuracy [17]. J-pruning uses
the J-value as a means to quantify if appending further rule terms is likely
to improve a rule’s predictive accuracy or is prone to overfit. Bramer’s basic
J-pruning is applied to Prism by calculating the J-value of the rule before
the induction of a new rule term and the J-value that the rule would have
after a newly induced rule term is appended. If the J-value goes up then the
rule term is appended. In the case where the J-value goes down, the rule
term is not appended, the rule currently being induced is truncated and is
treated as if a clash had occurred, as described briefly in Section 2.3.1.

It is important to note that each learner KS machine is able to calculate
the J-value of the locally best rule term induced solely from the attribute
lists from which the rule term was induced.

The first factor p(y) is the probability with which the left hand side of the
rule is covered. The number of instances that are covered by the induced rule
term is equivalent to the number of instances covered by the currently induced
rule. This number can easily be retrieved from the attribute list the term
was induced from. The second factor is called the j-measure. The factors and

27

quotients needed to calculate the j-measure include the terms p(x | y), which
is the probability with which the rule covers the target class and p(x) which
is the probability that the target class occurs in the training data before the
rule has been induced. p(x | y) is equivalent to the conditional probability
with which the rule was induced and does not need to be calculated again
and p(x) can easily be calculated before the induction of the present rule has
been started using any attribute list.

Now only knowing the actual rule term that has been induced locally, each
learner KS is able to calculate the J-value of the total rule if the rule term
would be appended to the rule. Once the locally best rule term is induced,
the J-value can be advertised on the blackboard together with the remaining
information needed by the moderator in order to derive the globally best
rule term. Thus there is no additional synchronisation step needed. The
moderator can now also take the J-values of all ‘candidate’ rule terms into
account. The moderator either writes the name of the winning learner KS
on the ‘global information partition’ or if the globally best rule term would
decrease the rule’s J-value, it writes a message on the partition that informs
the learner KS that ‘nobody has induced an appropriate term’ or in short
‘Do Pruning’. Displayed below is the modified code of the moderator that
now also takes the J-values into account. The modified parts compared with
the standard PMCRI moderator pseudocode are in lines 5, 14, 15, 19, 20, 21
and 25:

1 //Global Variables

2 int _numberOfLearnerKS;

3 double _bestProbability = 0;

4 int _bestTargetClassCount = 0;

5 double _bestJValue = 0;

6 String _bestLearnerKSID;

7 int _counter = 0;

8 //Method called when information about a new rule term

//is written on the blackboard.

9 public void updateModerator(String name, double

probability, double tc_count, double jvalue){

10 _counter++;

11 IF((probabilities>_bestProbability)OR

12 ((probability==_bestProbability)AND

13 (tc_count>_bestTargetClassCount))){

14 IF(jvalue>=_bestJValue){

15 _bestJValue = jvalue;

16 _bestProbability = probability;

17 _bestTargetClassCount = tc_count,;

18 _bestLearnerKSID = name;

19 }ELSE{

20 _bestLearnerKSID = Do Pruning;

21 }

28

22 }

23 IF(counter== numberOfLearnerKS){

24 write _bestLearnerKSID on Global Information Partition;

25 _bestJValue = 0;

26 _bestProbability = 0;

27 _bestTargetClassCount = 0;

28 _counter = 0;

29 }

30 }

So far for the learner KS machines, the source code is similar to that for
standard PMCRI, except that the rule term information is enhanced by the
J-value. After a learner KS has submitted the locally best rule term it awaits
the name or id of the ‘winning learner KS’ to be advertised on the blackboard.
However the name or id might actually be replaced by the information ‘Do
Pruning’ and the learner KS has to handle this event as well. If the rule
induced so far covers the target class as the majority class, then the rule is
kept and all instances covered by the rule are treated as if they belong to the
target class, otherwise the rule is discarded and clash resolution as described
briefly in Section 2.3.1 is invoked. The pseudocode below shows the learner
code from Section 3 modified to handle the information ‘Do Pruning’. The
modified parts are in lines 16 and 17:

1 //Global Variables

2 TargetClass _tc;

3 List _rules;

4 Rule _rule;

5 List _fromRulesCoveredIds;

6 int[] _toDeleteIds;

7 while(while attribute lists are not empty

and contain _tc){

8 _rule = new Rule();

9 while((local lists contain tc)AND

(_tc is not the only class)){

10 induce locally best rule term t;

11 exchange information about t with all other

processors (1);

12 if(t is globally best rule term){

13 rule.append(t);

14 toDeleteIds = Generate by t uncovered ids;

15 communicate toDeleteIds to remaining

processors (2);

16 } else if(Do Pruning){

17 invoke clash resolution.

18 } else {

19 retrieve toDeleteIds from winning processor (3);

20 }

21 delete all list instances matching toDeleteIds;

22 clear toDeleteIds;

23 }

29

24 _fromRulesCoveredIds.add(ids present in current

attribute lists);

25 rules.add(rule);

26 restore all attribute lists to their initial size;

27 delete all instances from all attribute lists that

match ids in _fromRulesCoveredIds;

28 }

Overall it can be seen that there is no further synchronisation step in-
volved compared with PMCRI.

5.2. An Evaluation of J-PMCRI

For the evaluation two very large datasets, one with a moderate num-
ber of attributes and one with a large number of attributes have been used
from the infobiotics repository [29], which comprises very large datasets for
benchmarking purposes. The first dataset is called infobio2 in this paper. It
comprises 60 attributes, 4 classifications and more than 2.3 million training
instances. The second dataset used is called infobio3. Infobio3 comprises
220 attributes, 4 classifications and 2.5 million data records. This section
focuses on the performance of PMCRI when pruning is incorporated. Thus
with infobio2 and infobio3 two real large noisy datasets are used. The data
are sampled and the number of rule terms induced is measured. The number
of rules and rule terms will vary with different sample sizes, thus a direct
comparison of the runtimes with respect to the data sample size (size up
experiments) is not possible as the runtimes are influenced by the number of
rules and rule terms induced. However what can be examined are the speed
up factors for the same data size with a different number of processors, and
the behaviour of the number of rules and rule terms induced with respect
to the number of training instances. All runtimes recorded for J-PMCRI in-
clude the time needed to transfer the training data to each learner KS from
a single machine. For the serial version of PrismTCS with J-pruning there
is no transfer of data involved. It is expected that, for different amounts of
training data, the number of rule terms induced will fluctuate but the trend
to an increase of the number of rule terms is expected to be low or not present
for Prism implementations using J-pruning.

Figure 11 shows the number of rule terms induced on the infobio2 and
infobio3 datasets using PrismTCS parallelised with J-PMCRI. The number
of rule terms stays relatively stable with minor fluctuations.

The fact that the number of rule terms does not increase considerably with
an increasing number of training instances when using J-pruning strongly

30

Figure 11: Number of rule terms induced using PrismTCS parallelised with J-PMCRI.

suggests the use of J-pruning not only for inducing more generalised rules but
also for scaling purposes; the fewer rule terms have to be induced, the fewer
iterations of the algorithm through the training data are required and thus
the faster the rule induction process. The scalability of J-PMCRI is examined
using the PrismTCS algorithm on the datasets infobio2 and infobio3. For
this purpose the speed up factors are calculated.

Figure 12 shows speed up factors plotted versus the number of processors
used on fixed numbers of training instances. What can be observed here is
similar to the results of the first version of PMCRI. The speed up factors
increase with an increasing number of processors then decrease again. This
can be explained by the fact that using more processors will impose a larger
communication overhead as well as managing overhead. However, what can
also be observed is that the best speed up is reached for a larger number of
processors if the number of training instances is large as well. Thus loosely
speaking the larger the number of training instances, the more J-PMCRI
benefits from using additional processors.

Please note that the experiments illustrated in Figure 12 do not include
an experiment with all 2.3 million data records. The reason for excluding
this run here is that it was not possible to perform this experiment on a
1 processor configuration due to memory constraints. There is a workload
imbalance for an 8 processor configuration for infobio2. Also for the infobio3
dataset there are a number of cases where the workload is unbalanced, that is
the case for the 6 processor configuration , the 8 processor configuration, and
the 12 processor configuration. However the workload imbalance is hardly

31

Figure 12: Speed up factors obtained for J-PMCRI with the PrismTCS algorithm.

noticeable in the results obtained.

Figure 13: Speed up factors obtained using J-PMCRI on very large training data that

cannot be handled by a single machine.

Figure 13 shows the speed up factors obtained on the total training
dataset of the infobio2 and the infobio3 datasets. The experiments on info-

32

bio2 comprised a total of 2,338,121 instances and 60 attributes. For infobio3
there were 700,336 instances and 220 attributes. It would have been possible
to run J-PMCRI on all 2.5 million instances of infobio3, but only with a
12 processor machine configuration due to memory constraints. However for
the calculation of the speed up factors, runtimes of a PMCRI configuration
with less than 12 processors were needed, thus the number of data instances
needed to be reduced. The speed up factors are based on a 4 processor
configuration and not on a single processor. The reason for this is that a
minimum of 4 learner KS machines is needed in order to be able to process
the large amount of training data due to memory constraints. Also the pur-
pose of these experiments is to show that more than 12 learner KS machines
are beneficial if the data are large enough. What can be seen in Figure 13
is that the speed up factors are still increasing with a total of 12 learner KS
machines. This is different compared with the experiments outlined in Figure
12, where 12 learner KS machines were not any more beneficial. However
the experiments in Figure 12 were conducted on much smaller data samples.
The fact that the speed up factors are still growing for 12 processors high-
lights even more the observed behaviour that using more processors is more
beneficial the larger the amount of training data.

Both frameworks, PMCRI and J-PMCRI are useful in their own right,
just as Prism with and Prism without J-pruning are. PMCRI could be used
in any case, however, for some data a Prism algorithm with pre-pruning
might be better. For example, if there are a lot of noise or there are a lot of
missing values in the dataset, in these cases Prism with J-pruning is likely
to achieve a better classification accuracy [38], hence J-PMCRI should be
used in order to reduce overfitting on the data if required. However if Prism
does not tend to overfit on the data, then PMCRI will be sufficient. In the
computational sense, both frameworks exhibit a similar speed up behaviour.

6. Conclusions

This work presents the first attempt to parallelise the Prism family of al-
gorithms for modular classification rule induction. First the problem of data
mining on massive datasets was discussed with the conclusion that parallel
algorithms are needed in order to scale up data mining with the focus on par-
allelisation on networks of standard computer workstations. Parallelisation
in the area of classification rule induction has so far focused on the induction
of decision trees. Section 2 highlights the Prism family of algorithms as an

33

alternative to decision trees that performs better than decision trees in many
cases as it avoids the replicated subtree problem. Section 3 introduces the
blackboard based PMCRI framework that allows the parallelisation of any
member of the Prism family in a network of computer workstations. PMCRI
induces exactly the same rules as any serial Prism algorithm and is evaluated
in Section 4. It has been found that PMCRI scales linearly with the increas-
ing amount of data instances and attributes. Also the capability barrier, the
maximum amount of data that can be loaded into the PMCRI system scales
linearly with an increasing amount of memory. Furthermore it has been
found that the larger the training data used, the more processors are benefi-
cial. Section 5 discusses a variation of PMCRI, J-PMCRI that incorporates
a pre-pruning facility, J-pruning. Pre-pruning is particularly interesting in
computational terms as it prevents unnecessary rule terms being induced in
the first place and thus lowers the computational demands of Prism algo-
rithms in general, as less iterations for the rule term induction have to be
performed. Section 5 also evaluates J-PMCRI in computational terms with
similar results as for PMCRI. Loosely speaking PMCRI shows a nice scal-
ability with respect to the data volume and number of workstations used.
Ongoing work comprises the extension of the framework to induce general
rules that do not predict a certain class but describe important relationships
in the dataset. Also the integration of a further, only recently developed,
pre-pruning version for Prism algorithms, Jmax-pruning [30, 31] is investi-
gated for integration in the PMCRI framework. In general the development
of PMCRI allows the application of Prism algorithms on a larger range of
datasets that have previously simply been too large to be analysed using the
Prism approach.

References

[1] D. Berrar, F. Stahl, C. S. G. Silva, J. R. Rodrigues, R. M. M. Brito,
W. Dubitzky, Towards data warehousing and mining of protein unfold-
ing simulation data, Journal of Clinical Monitoring and Computing 19
(2005) 307–317.

[2] F. Stahl, D. Berrar, C. S. G. Silva, J. R. Rodrigues, R. M. M. Brito,
W. Dubitzky, Grid warehousing of molecular dynamics protein unfolding
data, in: Proceedings of the Fifth IEEE/ACM Int’l Symposium on
Cluster Computing and the Grid, IEEE/ACM, Cardiff, 2005, pp. 496–
503.

34

[3] B. McClean, C. Hawkins, A. Spagna, M. Lattanzi, B. Lasker, H. Jenkner,
R. White, New horizons from multi-wavelength sky surveys, in: Pro-
ceedings of the 179th Symposium of the International Astronomical
Union held in Baltimore.

[4] A. Szalay, The Evolving Universe, ASSL 231, 1998.

[5] E. B. Hunt, P. J. Stone, J. Marin, Experiments in induction, Academic
Press, New York, 1966.

[6] R. J. Quinlan, Induction of decision trees, Machine Learning 1 (1986)
81–106.

[7] R. J. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann
(1993).

[8] R. S. Michalski, On the Quasi-Minimal solution of the general cover-
ing problem, in: Proceedings of the Fifth International Symposium on
Information Processing, Bled, Yugoslavia, pp. 125–128, 1969.

[9] J. Shafer, R. Agrawal, M. Metha, SPRINT: a scalable parallel classifier
for data mining, in: Proc. of the 22nd Int’l Conference on Very Large
Databases, Morgan Kaufmann, 1996, pp. 544–555.

[10] M. Joshi, G. Karypis, V. Kumar, Scalparc: a new scalable and ef-
ficient parallel classification algorithm for mining large datasets, in:
Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings
of the First Merged International ... and Symposium on Parallel and
Distributed Processing 1998, pp. 573–579.

[11] J. Cendrowska, PRISM: an algorithm for inducing modular rules, In-
ternational Journal of Man-Machine Studies 27 (1987) 349–370.

[12] I. H. Witten, F. Eibe, Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations, Morgan Kaufmann, 1999.

[13] M. A. Bramer, Inducer: a public domain workbench for data mining,
International Journal of Systems Science 36 (2005) 909–919.

[14] F. Stahl, Parallel Rule Induction, Ph.D. thesis, University of
Portsmouth, 2009.

35

[15] M. A. Bramer, Automatic induction of classification rules from examples
using N-Prism, in: Research and Development in Intelligent Systems
XVI, Springer-Verlag, Cambridge, 2000, pp. 99–121.

[16] R. Kerber, Chimerge: Discretization of numeric attributes, in: AAAI,
pp. 123–128, 1992.

[17] M. A. Bramer, An information-theoretic approach to the pre-pruning
of classification rules, in: B. N. M Musen, R. Studer (Eds.), Intelligent
Information Processing, Kluwer, 2002, pp. 201–212.

[18] P. Smyth, R. M. Goodman, An information theoretic approach to rule
induction from databases, Transactions on Knowledge and Data Engi-
neering 4 (1992) 301–316.

[19] F. Stahl, M. Bramer, M. Adda, Parallel rule induction with information
theoretic pre-pruning, in: Twenty-ninth SGAI International Confer-
ence on Innovative Techniques and Applications of Artificial Intelligence,
Springer, 2010, pp. 151–164.

[20] F. Provost, Distributed data mining: Scaling up and beyond, in: Ad-
vances in Distributed and Parallel Knowledge Discovery, MIT Press,
2000, pp. 3–27.

[21] F. Stahl, M. A. Bramer, M. Adda, PMCRI: A parallel modular clas-
sification rule induction framework, in: MLDM, Springer, 2009, pp.
148–162.

[22] L. Nolle, K. C. P. Wong, A. Hopgood, DARBS: a distributed blackboard
system, in: Proceedings of the Twenty-first SGES International Confer-
ence on Knowledge Based Systems and Applied Artificial Intelligence,
Springer, Cambridge, 2001, pp. 161–170.

[23] D. Corkill, Blackboard systems, AI Expert 6 (1991) 40–47.

[24] Y. C. Jiang, Z. P. Xia, Y. P. Zhong, S. Y. Zhang, An adaptive adjusting
mechanism for agent distributed blackboard architectures, Microproces-
sors and Microsystems 29 (2005) 9–20.

[25] C. L. Blake, C. J. Merz, UCI repository of machine learning databases,
Technical Report, University of California, Irvine, Department of Infor-
mation and Computer Sciences, 1998.

36

[26] J. L. Hennessy, D. A. Patterson, Computer Architecture A Quantitative
Approach, Morgan Kaufmann, USA, fourth edition, 2007.

[27] K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill Book Co., first edition, 1990.

[28] C. Xavier, S. S. Iyengar, Introduction to Parallel Algorithms, JohnWiley
& Sons, Inc., 1998.

[29] J. Bacardit, N. Krasnogor, The Infobiotics PSP benchmarks repository,
Technical Report, 2008.

[30] F. Stahl, M. Bramer, Induction of modular classification rules: Using
jmax-pruning, in: Thirtieth SGAI International Conference on Inno-
vative Techniques and Applications of Artificial Intelligence, Springer,
2011, pp. 79–92.

[31] F. Stahl, M. Bramer, Jmax-pruning: A facility for the information theo-
retic pruning of modular classification rules, Knowledge-Based Systems
19(0) (2012) 12–19.

[32] M. Bramer, Using J-pruning to reduce overfitting in classification trees,
Knowledge-Based Systems 15(5-6) (2002) 301–308.

[33] A. Mutlu, P. Senkul, Y. Kavurucu, Improving the scalability of ILP-
based multi-relational concept discovery system through parallelization,
Knowledge-Based Systems 27(0) (2012) 352–368.

[34] http://hadoop.apache.org/ (last visited in August 2011).

[35] http://www.cs.waikato.ac.nz/ml/weka/ (last visited in December 2011).

[36] W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning, pages 115–123. Morgan
Kaufmann, 1995.

[37] D. T. Pham and M. S. Aksoy. Rules: A simple rule extraction system.
Expert Systems with Applications, 8(1):59–65, 1995.

[38] M. Bramer. Using J-Pruning to Reduce Overfitting of Classification
Rules in Noisy Domains. In DEXA - Database and Expert Systems
Applications, pages 433–442. Springer-Verlag, 2002.

37

