
Induction of Modular Classification Rules:
Using Jmax-pruning

Frederic Stahl and Max Bramer

Abstract The Prism family of algorithms induces modular classification rules
which, in contrast to decision tree induction algorithms, do not necessarily fit to-
gether into a decision tree structure. Classifiers induced by Prism algorithms achieve
a comparable accuracy compared with decision trees and in some cases even out-
perform decision trees. Both kinds of algorithms tend to overfit on large and noisy
datasets and this has led to the development of pruning methods. Pruning methods
use various metrics to truncate decision trees or to eliminate whole rules or single
rule terms from a Prism rule set. For decision trees many pre-pruning and post-
pruning methods exist, however for Prism algorithms only one pre-pruning method
has been developed,J-pruning. Recent work with Prism algorithms examinedJ-
pruningin the context of very large datasets and found that the current method does
not use its full potential. This paper revisits theJ-pruningmethod for the Prism fam-
ily of algorithms and develops a new pruning methodJmax-pruning, discusses it in
theoretical terms and evaluates it empirically.

1 Introduction

Classification rule induction from large training samples has a growing commer-
cial importance and can be traced back to the 1960s [7]. Two general approaches
to classification rule induction exist the ‘separate and conquer’ and the ‘divide and
conquer’ approaches [14]. ‘Divide and conquer’ is better known as Top Down In-
duction of Decision Trees (TDIDT) [10] as it induces classification rules in the
intermediate representation of a decision tree. The ‘separate and conquer’ approach
can be traced back to the AQ learning system in the late 1960s [9]. Compared with
TDIDT AQ generates a set ofIF..THEN rules rather than decision trees, which is

Frederic Stahl, Max Bramer
University of Portsmouth, School of Computing, BuckinghamBuilding, Lion Terrace, PO1 3HE
Portsmouth, UK e-mail:{Frederic.Stahl; Max.Bramer}@port.ac.uk

Frederic Stahl and Max Bramer

useful for expert systems applications that are based on production rules. However
most research concentrates on the TDIDT approach.

An important development of the ‘separate and conquer’ approach is the Prism
family of algorithms [5, 2, 3]. Prism induces rules that are modular and that do not
necessarily fit into a decision tree. Prism achieves a comparable classification accu-
racy compared with TDIDT and in some cases even outperforms TDIDT [2], espe-
cially if the training data is noisy. Recent research on the Prism family of algorithms
comprises a framework that allows the parallelisation of any algorithm of the Prism
family in order to make Prism algorithms scale better to large training data. The
framework is called Parallel Modular Classification Rule Inducer (PMCRI) [13].

Like any classification rule induction algorithm Prism suffers fromoverfitting
rules to the training data. Overfitting can result in a low predictive accuracy on
previously unseen data instances (the test set) and a high number of induced rules
and rule terms. There exist a variety of pruning methods for decision trees [6] that
aim to reduce the unwantedoverfitting, however there is only one published method
of pruning rules of the Prism family,J-pruning[3]. J-pruninguses theJ-measure, an
information theoretic means to quantify the information content of a rule.J-pruning
pre-prunesthe rules during their induction.J-pruninghas been integrated in PMCRI
and not only improves the predictive accuracy but also lowers the number of rules
and rule terms induced and thus also improves the computational efficiency of Prism
algorithms [12].

This paper revisits the J-measure andJ-pruning, developsJmax-pruning, a varia-
tion of J-pruningand evaluates them empirically. Section 2 outlines the Prism Fam-
ily of algorithms and compares them to TDIDT. Section 3 outlinesJmax-pruning
followed by an empirical evaluation in Section 4. Ongoing work is discussed in Sec-
tion 5 which comprises a new variation of the Prism approach andJmax-pruningfor
TDIDT. Some concluding remarks can be found in Section 6.

2 The Prism Family of Algorithms

As mentioned in Section 1, rule representation differs between the ‘divide and con-
quer’ and ‘separate and conquer’ approaches. The rule sets generated by the ‘divide
and conquer’ approach are in the form of decision trees whereas rules generated by
the ‘separate and conquer’ approach are modular. Modular rules do not necessarily
fit into a decision tree and normally do not. The rule representation of decision trees
is the main drawback of the ‘divide and conquer’ approach, for example rules such
as:

IF a = 1 AND b = 1 THEN class = 1

IF c = 1 AND d = 1 THEN class = 0

cannot be represented in a tree structure as they have no attribute in common.
Forcing these rules into a tree will require the introduction of additional rule terms

Jmax-Pruning

that are logically redundant, and thus result in unnecessarily large and confusing
trees [5]. This is also known as the replicated subtree problem [14].

‘Separate and conquer’ algorithms induce directly sets of ’modular’ rules like
those above avoiding unnecessarily redundant rule terms that are induced just for
the representation in a tree structure. The basic ‘separateand conquer’ approach can
be described as follows:

Rule_Set = [];
While Stopping Criterion not satisfied{

Rule = Learn_Rule;
Remove all data instances covered from Rule;

}

The Learn Ruleprocedure generates the best rule for the current subset of the
training data where best is defined by a particular heuristicthat may vary from algo-
rithm to algorithm. The stopping criterion is also dependent on the algorithm used.
After inducing a rule, the rule is added to the rule set and allinstances that are cov-
ered by the rule are deleted and a new rule is induced on the remaining training
instances.

In Prism each rule is generated for a particular Target Class(TC). The heuristic
Prism uses in order to specialise a rule is the probability with which the rule covers
the TC in the current subset of the training data. The stopping criterion is fulfilled
as soon as there are no training instances left that are associated with the TC.

Cendrowska’s original Prism algorithm selects one class asthe TC at the begin-
ning and induces all rules for that class. It then selects thenext class as TC and
resets the whole training data to its original size and induces all rules for the next
TC. This is repeated until all classes have been selected as TC. Variations exist
such as PrismTC [4] and PrismTCS (Target Class Smallest first) [3]. Both select
the TC anew after each rule induced. PrismTC always uses the majority class and
PrismTCS uses the minority class. Both variations introduce an order in which the
rules are induced, where there is none in the basic Prism approach. However the
predictive accuracy of PrismTC cannot compete with that of Prism and PrismTCS
(personal communication). PrismTCS does not reset the dataset to its original size
and thus is faster than Prism, which produces a high classification accuracy and also
sets an order in which the rules should be applied to the test set.

The basic PrismTCS algorithm is outlined below whereAx is a possible attribute
value pair andD is the training dataset:

Step 1: Find class i that has the fewest instances in the training
set

Step 2: Calculate for each Ax p(class = i| Ax)
Step 3: Select the Ax with the maximum p(class = i| Ax)

and create a subset D’ of D that comprises all instances
that match the selected Ax.

Step 4: Repeat 2 to 3 for D’ until D’ only contains instances
of classification i. The induced rule is then a
conjunction of all selected Ax and i.

Step 5: Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far.

Step 6: IF D’ is not empty repeat steps 1 to 5 until D’ does not
contain any instances of classification i.

Frederic Stahl and Max Bramer

We will concentrate here on the more popular PrismTCS approach but all tech-
niques and methods outlined here can be applied to any memberof the Prism family.

2.1 Dealing with Clashes

A clash setis a set of instances in a subset of the training set that are assigned to
different classes but cannot be separated further. For example this is inevitable if two
or more instances are identical except for their classification. Cendrowska’s original
Prism algorithm does not take into account that there may be clashes in the training
data. However the Inducer software implementations of the Prism algorithms do
take clashes into account [2, 4]. What happens in the case of aclash in Inducer is
that all instances are treated as if they belong to the TC. [2]mentions that the best
approach is to check if the TC is also the majority class. If itis then the rule currently
being induced is taken otherwise the rule is discarded. If a clash is encountered and
the majority class is not the TC then the rule is discarded andall instances in the
clash set that match the TC are deleted. The reason for manipulating the clash set
this way is that if the rule were discarded and the clash set kept then the same rule
would be induced all over again and the same clash set would beencountered again.

2.2 Dealing with Continuous Attributes

Continuous attributes are not handled by Cendrowska’s original Prism algorithm.
One way to deal with continuous attributes is discretisation of the attribute values
prior to the algorithm’s application, for example applyingChiMerge [8] before the
application of a Prism algorithm. Bramer’s Inducer software [4] provides implemen-
tations of Prism algorithms that deal with continuous attributes, these are also used
in all Prism implementations used in this work. Dealing withcontinuous attributes
can be integrated in step two in the pseudo code above before the calculation of
p(class= i|Ax). If Ax is continuous then the training data is sorted forAx. For ex-
ample letAx comprise the following values after sorting, -3, -4.2, 3.5,5.5 and 10,
then the data is scanned for these attribute values in eitherascending or descending
order. For each attribute value, for example 5.5, two testsp(class= i |Ax < 5.5) and
p(class= i | Ax ≥ 5.5) are conducted. The one with the largest conditional proba-
bility for all the values of the attribute is kept and compared with those conditional
probabilities from the remaining attributes.

Jmax-Pruning

2.3 J-pruning

As mentioned in the introduction, classifiers are generallypruned to prevent them
from overfitting. Pruning methods can be divided into two categories,pre-pruning
andpost-pruning. Post-pruning is applied to the classifier after it has been induced
whereas pre-pruning is applied during the rule induction process. For Prism algo-
rithms only one pruning method has been developed so far,J-pruning [3], a pre-
pruning method based on the J-measure [11], a measure for theinformation content
of a rule.J-pruningcan also be applied to decision tree induction algorithms and
has shown good results on both kinds of algorithms [3]. As also mentioned in the
introduction,J-pruninghas found recent popularity in [12], as it reduces the number
of rules and rule terms induced considerably and thus increases the computational
efficiency.

According to [11] the theoretical average information content of a rule of the
form IF Y = y THEN X = xcan be measured in bits and is denoted byJ(X,Y=y).

J(X;Y = y) = p(y) · j(X;Y = y) (1)

As shown in equation (1)J(X;Y = y) is essentially a product ofp(y), the prob-
ability with which the left hand side of the rule will occur, and j(X;Y = y) which
is called the j-measure (with a lower case j) and measures thegoodness-of-fit of a
rule. The j-measure, also called thecross-entropy, defined in equation (2):

j(X;Y = y) = p(x | y) · log2(
p(x | y)

p(x)
)+ (1− p(x | y)) · log2(

(1− p(x | y))
(1− p(x))

) (2)

For a more detailed description of the J-measure Smyth’s paper [11] is recom-
mended. Bramer’s essential interpretation of the J-measure is that if a rule has a
high J-value then it also is likely to have a high predictive accuracy [3]. Hence the
J-value is used as an indicator of whether appending furtherrule terms is likely to
improve a rule’s predictive accuracy or lower it due to overfitting. The J-value of the
rule may go up or down when appending rule terms, also it may godown and up
again. However it is possible to calculate the maximum J-value that the rule with its
current terms might maximally achieve if additional terms were added. This upper
bound cannot of course be exceeded but its value is not necessarily achievable.

Bramer’s basicJ-pruning is applied to Prism by calculating the J-value of the
rule before the induction of a new rule term and the J-value that the rule would have
after a newly induced rule term is appended. If the J-value goes up then the rule term
is appended. In the case where the J-value goes down, the ruleterm is not appended
and a test is applied to determine whether the majority classof the instances that
are covered by the rule is also the TC. If the majority class isthe TC then the rule
is truncated and kept and all instances in the current subsetof the training set are
treated as if all instances belong the TC. If the majority class is not the TC, then the
rule is discarded and the clash resolution described in Section 2.1 is invoked.

Frederic Stahl and Max Bramer

3 Variation of J-pruning

In general there is very little work on pruning methods for the Prism family of algo-
rithms. Bramer’sJ-pruningin the Inducer software seems to be the only pruning fa-
cility developed for Prism algorithms. This section critiques the initialJ-pruningfa-
cility and outlinesJmax-pruning, a variation that makes further use of the J-measure.

3.1 Critique of J-pruning

Even thoughJ-pruningdescribed in Section 2.3 achieves good results regarding the
overfitting of Prism, it does not seem to exploit the J-measure to its full potential.
The reason is that even if the new rule term decreases the J-value, it is possible
that the J-value increases again when adding further rule terms [12]. If the rule
is truncated as soon as the J-value is decreased it may resultin the opposite of
overfitting, an over generalised rule with a lower predictive accuracy. The relatively
good results forJ-pruningachieved in [3] could be explained by the assumption that
it does not happen very often that the J-value decreases and then increases again.
However, how often this happens will be examined empirically in Section 4.

3.2 Jmax-pruning

According to [11], an upper bound for the J-measure for a rulecan be calculated
using equation (3):

Jmax= p(y)· max{ p(x | y) · log2(
1

p(x)
), (1− p(x | y)) · log2(1 | 1− p(x))} (3)

If the actual J-value of the rule currently being generated term by term matches
the maximum possible J-value (Jmax) it is an absolute signal to stop the induction of
further rule terms.

A concrete example is used to show how the J-values of a rule can develop. The
example used a dataset extracted from the UCI repository, the soybean dataset [1].
Here we induce rules using our own implementation of PrismTCS without anyJ-
pruning. The original dataset has been converted to a training set and a test set where
the training set comprises 80% of the data instances. The 39th rule induced is:

IF (temp = norm) AND (same-lst-sev-yrs = whole-field) AND (crop-hist =
same-lst-two-yrs) THEN CLASS = frog-eye-leaf-spot

Jmax-Pruning

This is a perfectly reasonable rule with a J-value of 0.00578. However looking
at the development of the J-values after each rule term appended draws a different
picture:

First Term

IF (temp = norm) THEN CLASS = frog-eye-leaf-spot

(J-value = 0.00113,Jmax = 0.02315)

Here the rule has J-value of 0.00113 after the first rule term has been appended.
The J-value for the complete rule (0.00578) is larger than the current J-value, which
is to be expected as the rule is not fully specialised yet on the TC.

Second Term

IF (temp = norm) AND (same-lst-sev-yrs = whole-field) THEN CLASS =
frog-eye-leaf-spot

(J-value = 0.00032,Jmax = 0.01157)

Now the J-value is decreased to 0.00032 andJmax to 0.01157. HereJ-pruningas
described in Section 2.3 would stop inducing further rule terms, the finished rule
would be

IF (temp = norm) THEN CLASS = frog-eye-leaf-spot

with a J-value of 0.00113. However looking at the value ofJmax, after the second
rule term has been appended, it can be seen that it is still higher than the previous
J-value for appending the first rule term. Thus it is still possible that the J-value may
increase again above the so far highest J-value of 0.00113. Inducing the next rule
term leads to:

Third Term

IF (temp = norm) AND (same-lst-sev-yrs = whole-field) AND (crop-hist =
same-lst-two-yrs) THEN CLASS = frog-eye-leaf-spot

(J-value = 0.00578,Jmax = 0.00578)

In this case the rule was finished after the appending of the third rule term as
it only covered examples of the TC. However, the interestingpart is that the J-
value increased again by appending the third rule term and isin fact the highest
J-value obtained. Using Bramer’s original method would have truncated the rule
too early leading to an overall average information contentof 0.00113 instead of
0.00578. The J-value and theJmaxvalue are rounded to five digits after the deci-
mal point and appear identical but are actually slightly different. Looking at more

Frederic Stahl and Max Bramer

digits the values are in fact for the J-value 0.005787394940853119 and for theJmax

0.005787395266794598. In this case no further rule terms can be added to the left-
hand side of the rule as the current subset of the training setonly contains instances
of the TC, but if this were not the case it would still not be worthwhile to add addi-
tional terms as the J-value is so close toJmax.

Overall this observation strongly suggests that pruning the rule as soon as the J-
value decreases does not fully exploit the J-measure’s potential. This work suggests
that J-pruningcould be improved by inducing the maximum number of possible
rule terms until the current subset cannot be broken down further or the actual J-
value is equal to or within a few percent ofJmax. As a rule is generated all the terms
are labelled with the actual J-value of the rule after appending this particular rule
term. The partial rule for which the largest rule J-value wascalculated would then
be identified and all rule terms appended afterwards truncated, with clash handling
as described in Section 2.1 invoked for the truncated rule [12]. We call this new
pre-pruning methodJmax-pruning.

4 Evaluation of Jmax-pruning

The datasets used have been retrieved from the UCI repository [1]. Each dataset is
divided into a test set holding 20% of the instances and a training set holding the
remaining 80% of the instances.

Table 1 shows the number of rules induced per training set andthe achieved
accuracy on the test set using PrismTCS withJ-pruningas described in Section 2.3
andJmax-pruningas proposed in Section 3.2.

What is also listed in Table 1 as ‘J-value recovers’, is the number of times the
J-value decreased and eventually increased again when firstfully expanding the rule
and then pruning it usingJmax-pruning. Using the originalJ-pruningas described
in Section 2.3 would not detect these J-value recoveries andlead to a rule with a
lower J-value and thus lower information content than it could possibly achieve.

What can be seen is that in all casesJmax-pruningperforms either better than
or produces the same accuracy asJ-pruning. In fact seven timesJmax-pruningpro-
duced a better result thanJ-pruningand nine times it produced the same accuracy as
J-pruning. Taking a closer look in the rule sets that have been producedin the nine
cases for which the accuracies for both pruning methods are the same revealed that
identical rule sets were produced in seven out of these nine cases. The two excep-
tions are the ‘Car Evolution’ and ‘ecoli’ datasets, howeverin these two exceptions
the classification accuracy was the same usingJmax-pruningor J-pruning. In the
cases where there are identical classifiers there were no J-value recoveries present.
In Section 3.1 we stated that the good performance ofJ-pruning[3], despite its ten-
dency to generalisation, can be explained by the fact that there are not many J-value
recoveries in the datasets and thus the tendency to over generalisation is low. Look-
ing into the last column of table 1 we can see the number of J-value recoveries. In
seven cases there are none, thus there is no potential for over generalisation by using

Jmax-Pruning

Table 1 Comparison ofJ-pruningandJmax-pruningon PrismTCS.

Dataset Number of RulesAccuracy (%)Number of RulesAccuracy (%)J-value recovers
J-Pruning J-max Pruning

monk1 4 79 12 86 4
monk3 3 98 3 98 0
vote 3 94 3 94 0
genetics 8 70 8 70 0
contact
lenses 4 95 4 95 0
breast
cancer 24 96 24 96 0
soybean 39 88 43 89 4
australian
credit 20 89 20 89 0
diabetes 29 75 31 76 1
crx 18 83 18 83 0
segmentation 83 79 86 82 2
ecoli 23 78 26 78 3
Balance
Scale 10 72 36 74 21
Car
Evaluation 4 76 4 76 1
Contraceptive
Method
Choice 19 44 28 45 8
Optical
Recognition
of
handwritten
Digits 456 57 467 58 6

J-pruningand for the remaining datasets there is only a very small number of J-value
recoveries with the exception of the ‘Balanced Scale’ dataset for which a 2% higher
accuracy has been retrieved by usingJmax-pruningcompared withJ-pruning.

Loosely speaking, if there are no J-value recoveries present, then Prism algo-
rithms withJmax-pruningwill produce identical classifiers to Prism algorithms with
J-pruning. However, if there are J-value recoveries, it is likely thatPrism algorithms
with Jmax-pruningwill produce classifiers that achieve a better accuracy thanPrism
algorithms withJ-pruning.

What can also be read from Table 1 is the number of rules induced. In all cases in
which both pruning methods produced the same accuracy, the classifiers and thus the
number of rules were identical. However in the cases where the J-value recovered,
then the number of rules induced withJmax-pruningwas larger than the number
of rules induced withJ-pruning. This can be explained by the fact that in the case
of a J-value recovery the rule gets specialised further thanwith normalJ-pruning
by adding more rule terms while still avoiding overfitting. Adding more rule terms
results in the rule covering fewer training instances from the current subset. This
in turn results in that before the next iteration for the nextrule less instances are

Frederic Stahl and Max Bramer

deleted from the training set, which potentially generatesmore rules, assuming that
the larger the number of training instances the more rules are generated.

5 Ongoing Work

5.1 J-PrismTCS

Annother possible variation of PrismTCS that is currently being implemented is
a version that is solely based on the J-measure. Rule terms would be induced by
generating all possible categorical and continuous rule terms and selecting the one
that results in the highest J-value for the current rule instead of selecting the one
with the largest conditional probability. Again the same stopping criterion as for
standard PrismTCS could be used, which is that all instancesof the current subset
of the training set belong to the same class. We call this variation of PrismTCS,
J-PrismTCS.

5.2 Jmax-Pruning for TDIDT

J-pruninghas also been integrated into the TDIDT approach as a pre-pruning fa-
cility and achieved a higher classification accuracy than TDIDT without J-pruning
[3]. Encouraged by the good results outlined in Section 4 which were achieved with
Jmax-pruningin PrismTCS, we are currently developing a version ofJmax-pruning
for TDIDT algorithms. The following pseudo code describes the basic TDIDT al-
gorithm.

IF All instances in the training set belong to the
same class

THEN return value of this class
ELSE (a) Select attribute A to split on

(b) Divide instances in the training set
into subsets, one for each value of A.

(c) Return a tree with a branch for each non
empty subset, each branch having a decendent
subtree or a class value produced by applying
the algorithm recursively

The basic approach ofJ-pruning in TDIDT is to prune a branch in the tree as
soon as a node is generated at which the J-value is less than atits parent node [3].
However performing theJ-pruningis more complicated than for Prism algorithms
as illustrated in the example below.

Figure 1 illustrates a possible tree which is used to explainJ-pruningandJmax-
pruning for TDIDT. The nodes labelled with ‘?’ are placeholders for possible sub-
trees. Now assuming that a depth first approach is used and thecurrent node being
expanded is node ‘D’. In this caseJ-pruningwould take the incomplete rule

Jmax-Pruning

Fig. 1 Example of a decision tree forJ-pruning.

(1) IF (A=0) AND (B=0) AND (C=0)...

the complete rule

(2) IF (A=0) AND (B=0) AND (C=0) AND (D=0) THEN class = 1

and the possible incomplete rule

(3) IF (A=0) AND (B=0) AND (C=0) AND (D=1)...

into account. Rule (2) is completed as all instances correspond to the same clas-
sification which is (class = 1). However instances covered byincomplete rule (3)
correspond in this case to more than one classification.

J-pruningnow compares the J-values of the incomplete rules (1) and (3). If the
J-value of rule (3) is less than the J-value of rule (1) then rule (3) is completed by
assigning it to the majority class of the corresponding instances. The complication is
that the calculation of the J-value of a rule requires us to know its right-hand side. In
the case of a complete (non-truncated) rule, such as rule (2), this is straightforward,
but how can the J-value be calculated for an incomplete rule?

The method described by Bramer [3] is to imagine all possiblealternative ways of
completing the incomplete rule with right-hand sides class=1, class=2 etc., calculate
the J-value of each such (completed) rule and take the largest of the values as the
estimate of the J-value of the incomplete rule.

In a similar way to J-pruning for Prism algorithms, J-pruning for TDIDT in its
current form does not necessarily exploit the full potential of the J-measure as again
it is possible that if rule (3) were not truncated at the node labelled ‘?’ but expanded
to complete the decision tree in the usual way the J-value forsome or possibly all of
the resulting complete branches might be at least as high as the J-value at node D.

Frederic Stahl and Max Bramer

Applying the idea of Jmax-pruning rather than J-pruning to TDIDT may increase
the classification accuracy. This could be done by developing the complete decision
tree and labelling each internal node with a J-value estimated as described above.
Each branch (corresponding to a completed rule) can then be truncated at the node
that gives the highest of the estimated J-values, in a similar way to the method
described in Section 3.2, with each truncated rule assignedto the majority class for
the corresponding set of instances.

This method appears attractive but there is a possible problem. Using the example
from figure 1 and assuming that the estimated J-value of rule (1) is greater than the
estimated J-value of rule (3) and that the majority class of the instances at node D
is ‘1’, then rule (1) would be truncated at node D and rule (3) would cease to exist,
giving two completed rules in this subtree:

(1) IF (A=0) AND (B=0) AND (C=0) THEN class = 1

and

(2) IF (A=0) AND (B=0) AND (C=0) AND (D=0) THEN class = 1

Both rules are illustrated in figure 2. Rule (2) is now redundant. It is just a special
case of rule (1), with the same classification, and can be discarded.

Fig. 2 Example of a decision tree with a redundant rule

Jmax-Pruning

Now suppose instead that in the above the majority class of the instances at node
(1) were ‘2’ (rather than ‘1’). In this case a different picture would emerge, with rules
(1) and (2) having different classifications. How likely this situation is to occur in
practice and how it should best be handled if it does both remain to be determined.

6 Conclusions

Section 2 discussed the Prism family of algorithms as an alternative approach to
TDIDT to the induction of classification rules. The Prism family of algorithms was
highlighted andJ-pruning, a pre-pruning facility for Prism algorithms based on the
J-measure, which describes the information content of a rule, was introduced. Sec-
tion 3 criticisedJ-pruningas it does not fully exploit the potential of the J-measure.
The J-value of a rule may go up or down when rule terms are appended to the rule.
J-pruningtruncates a rule as soon as the J-value decreases even if it may recover
(increase again). The proposedJmax-pruningexploits the possibility of a J-value
recovery and achieves in some cases, examined in Section 4, better results com-
pared withJ-pruning, but in every case examinedJmax-pruningachieved at least
the same or a higher classification accuracy compared withJ-pruning.

The ongoing work comprises the development of J-PrismTCS, aversion of
PrismTCS that is solely based on the J-measure, by using it also as a rule term
selection metric as discussed in Section 5.1. Furthermore the ongoing work com-
prises the development of a TDIDT algorithm that incorporatesJmax-pruningas
discussed in Section 5.2.

References

1. C L Blake and C J Merz. UCI repository of machine learning databases. Technical report,
University of California, Irvine, Department of Information and Computer Sciences, 1998.

2. M A Bramer. Automatic induction of classification rules from examples using N-Prism.
In Research and Development in Intelligent Systems XVI, pages 99–121, Cambridge, 2000.
Springer-Verlag.

3. M A Bramer. An information-theoretic approach to the pre-pruning of classification rules. In
B Neumann M Musen and R Studer, editors,Intelligent Information Processing, pages 201–
212. Kluwer, 2002.

4. M A Bramer. Inducer: a public domain workbench for data mining. International Journal of
Systems Science, 36(14):909–919, 2005.

5. J. Cendrowska. PRISM: an algorithm for inducing modular rules. International Journal of
Man-Machine Studies, 27(4):349–370, 1987.

6. F Esposito, D Malerba, and G Semeraro. A comparative analysis of methods for pruning
decision trees.IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476–
491, 1997.

7. E B Hunt, P J Stone, and J Marin.Experiments in induction. Academic Press, New York,
1966.

8. R Kerber. Chimerge: Discretization of numeric attributes. InAAAI, pages 123–128, 1992.

Frederic Stahl and Max Bramer

9. R S Michalski. On the Quasi-Minimal solution of the general covering problem. InProceed-
ings of the Fifth International Symposium on Information Processing, pages 125–128, Bled,
Yugoslavia, 1969.

10. R J Quinlan.C4.5: programs for machine learning. Morgan Kaufmann, 1993.
11. P. Smyth and R M Goodman. An information theoretic approach to rule induction from

databases.Transactions on Knowledge and Data Engineering, 4(4):301–316, 1992.
12. F T Stahl.Parallel Rule Induction. PhD thesis, University of Portsmouth, 2009.
13. F T Stahl, M A Bramer, and M Adda. PMCRI: A parallel modularclassification rule induction

framework. InMLDM, pages 148–162. Springer, 2009.
14. I H Witten and F Eibe.Data Mining: Practical Machine Learning Tools and Techniques with

Java Implementations. Morgan Kaufmann, 1999.

