Induction of Modular Classification Rules:
Using Jmax-pruning

Frederic Stahl and Max Bramer

Abstract The Prism family of algorithms induces modular classifimatrules
which, in contrast to decision tree induction algorithms,rbt necessarily fit to-
getherinto a decision tree structure. Classifiers indugdetism algorithms achieve
a comparable accuracy compared with decision trees andhie sases even out-
perform decision trees. Both kinds of algorithms tend torfitven large and noisy
datasets and this has led to the development of pruning mtiouning methods
use various metrics to truncate decision trees or to elitaindiole rules or single
rule terms from a Prism rule set. For decision trees manyppuaing and post-
pruning methods exist, however for Prism algorithms onlg pre-pruning method
has been developed;pruning Recent work with Prism algorithms examinéd
pruningin the context of very large datasets and found that the ntimethod does
not use its full potential. This paper revisits th@runingmethod for the Prism fam-
ily of algorithms and develops a new pruning metlogax-pruningdiscusses it in
theoretical terms and evaluates it empirically.

1 Introduction

Classification rule induction from large training samples la growing commer-
cial importance and can be traced back to the 1960s [7]. Twergé approaches
to classification rule induction exist the ‘separate andgeem’ and the ‘divide and
conquer’ approaches [14]. ‘Divide and conquer’ is betteswn as Top Down In-
duction of Decision Trees (TDIDT) [10] as it induces clagsifion rules in the
intermediate representation of a decision tree. The ‘sepand conquer’ approach
can be traced back to the AQ learning system in the late 13§0€pmpared with
TDIDT AQ generates a set dF..THEN rules rather than decision trees, which is

Frederic Stahl, Max Bramer
University of Portsmouth, School of Computing, BuckinghBueilding, Lion Terrace, PO1 3HE
Portsmouth, UK e-mail{ Frederic.Stahl; Max.Bramg@port.ac.uk

Frederic Stahl and Max Bramer

useful for expert systems applications that are based atuption rules. However
most research concentrates on the TDIDT approach.

An important development of the ‘separate and conquer’ @ggyr is the Prism
family of algorithms [5, 2, 3]. Prism induces rules that aredular and that do not
necessarily fit into a decision tree. Prism achieves a coalyaclassification accu-
racy compared with TDIDT and in some cases even outperfoldiBT [2], espe-
cially if the training data is noisy. Recent research on ttienPfamily of algorithms
comprises a framework that allows the parallelisation gfagorithm of the Prism
family in order to make Prism algorithms scale better todatgining data. The
framework is called Parallel Modular Classification Rulduoer (PMCRI) [13].

Like any classification rule induction algorithm Prism suff fromoverfitting
rules to the training data. Overfitting can result in a lowdicéve accuracy on
previously unseen data instances (the test set) and a higherwof induced rules
and rule terms. There exist a variety of pruning methods émision trees [6] that
aim to reduce the unwantederfitting however there is only one published method
of pruning rules of the Prism family;pruning[3]. J-pruninguses the-measurean
information theoretic means to quantify the informationtemt of a ruleJ-pruning
pre-pruneghe rules during their inductiod-pruninghas been integrated in PMCRI
and not only improves the predictive accuracy but also lewee number of rules
and rule terms induced and thus also improves the compuo#gdficiency of Prism
algorithms [12].

This paper revisits the J-measure dnpruning developsimax-pruninga varia-
tion of J-pruningand evaluates them empirically. Section 2 outlines thenPRam-
ily of algorithms and compares them to TDIDT. Section 3 awgiJmax-pruning
followed by an empirical evaluation in Section 4. Ongoinghkis discussed in Sec-
tion 5 which comprises a new variation of the Prism approactdanax-prunindor
TDIDT. Some concluding remarks can be found in Section 6.

2 The Prism Family of Algorithms

As mentioned in Section 1, rule representation differs betwthe ‘divide and con-
quer’ and ‘separate and conquer’ approaches. The rule setsaged by the ‘divide
and conquer’ approach are in the form of decision trees velsendes generated by
the ‘separate and conquer’ approach are modular. Modukss do not necessarily
fit into a decision tree and normally do not. The rule repres@mn of decision trees
is the main drawback of the ‘divide and conquer’ approachef@mple rules such
as:

IFa=1ANDb=1THENCclass=1
IFc=1ANDd=1THENclass =0

cannot be represented in a tree structure as they have fmug#tin common.
Forcing these rules into a tree will require the introduttid additional rule terms

Jmax-Pruning

that are logically redundant, and thus result in unneciégdarge and confusing
trees [5]. This is also known as the replicated subtree profjl4].

‘Separate and conquer’ algorithms induce directly setsvaddular’ rules like
those above avoiding unnecessarily redundant rule teraisatie induced just for
the representation in a tree structure. The basic ‘sepanateonquer’ approach can
be described as follows:

Rule_Set =1[];
VWil e Stopping Criterion not satisfied{
Rul e = Learn_Rul e;
Renove all data instances covered from Rul e;

}

The Learn Rule procedure generates the best rule for the current subskeof t
training data where best is defined by a particular heutisitmay vary from algo-
rithm to algorithm. The stopping criterion is also depertdenthe algorithm used.
After inducing a rule, the rule is added to the rule set anéhatences that are cov-
ered by the rule are deleted and a new rule is induced on thaimerg training
instances.

In Prism each rule is generated for a particular Target GI&€3. The heuristic
Prism uses in order to specialise a rule is the probabilitih which the rule covers
the TC in the current subset of the training data. The stappiiterion is fulfilled
as soon as there are no training instances left that areiatbwith the TC.

Cendrowska’s original Prism algorithm selects one clagk@3 C at the begin-
ning and induces all rules for that class. It then selectsnthé class as TC and
resets the whole training data to its original size and ieduall rules for the next
TC. This is repeated until all classes have been selectedCad/driations exist
such as PrismTC [4] and PrismTCS (Target Class Smalles} f8stBoth select
the TC anew after each rule induced. PrismTC always uses #jerity class and
PrismTCS uses the minority class. Both variations intredac order in which the
rules are induced, where there is none in the basic Prisnoappr However the
predictive accuracy of PrismTC cannot compete with thatra® and PrismTCS
(personal communication). PrismTCS does not reset theselata its original size
and thus is faster than Prism, which produces a high clasditaccuracy and also
sets an order in which the rules should be applied to theé¢st s

The basic PrismTCS algorithm is outlined below whégeés a possible attribute
value pair and is the training dataset:

Step 1: Find class i that has the fewest instances in the training
set

Step 2: Calculate for each Ax p(class =i| Ax)
Step 3: Select the Ax with the nmaxi num p(class = i| Ax)
and create a subset D of D that conprises all instances

that match the sel ected Ax.

Step 4: Repeat 2 to 3 for D wuntil D only contains instances
of classification i. The induced rule is then a
conjunction of all selected Ax and i.

Step 5: Create a new D that conprises all instances of D except
those that are covered by all rules induced so far.

Step 6: IF D is not enpty repeat steps 1 to 5 until D does not
contain any instances of classificationi.

Frederic Stahl and Max Bramer

We will concentrate here on the more popular PrismTCS agprbat all tech-
niques and methods outlined here can be applied to any merhther Prism family.

2.1 Dealing with Clashes

A clash setis a set of instances in a subset of the training set that aigresl to
different classes but cannot be separated further. Forgheghis is inevitable if two
or more instances are identical except for their classiinpaCendrowska’s original
Prism algorithm does not take into account that there mayastes in the training
data. However the Inducer software implementations of tienPalgorithms do
take clashes into account [2, 4]. What happens in the caselakh in Inducer is
that all instances are treated as if they belong to the TOng@jtions that the best
approachis to check if the TC is also the majority class.i¢fihen the rule currently
being induced is taken otherwise the rule is discarded. lishds encountered and
the majority class is not the TC then the rule is discardedahisstances in the
clash set that match the TC are deleted. The reason for matiifuthe clash set
this way is that if the rule were discarded and the clash sgtttken the same rule
would be induced all over again and the same clash set woldddmuntered again.

2.2 Dealing with Continuous Attributes

Continuous attributes are not handled by Cendrowska'smaiidrism algorithm.
One way to deal with continuous attributes is discretisatibthe attribute values
prior to the algorithm'’s application, for example applyi@biMerge [8] before the
application of a Prism algorithm. Bramer’s Inducer softevg#] provides implemen-
tations of Prism algorithms that deal with continuous htties, these are also used
in all Prism implementations used in this work. Dealing wétintinuous attributes
can be integrated in step two in the pseudo code above bédfereaiculation of
p(class=i|Ay). If A is continuous then the training data is sortedAgr For ex-
ample letA; comprise the following values after sorting, -3, -4.2, % and 10,
then the data is scanned for these attribute values in gfeending or descending
order. For each attribute value, for example 5.5, two tp&tkass=i | Ax < 5.5) and
p(class=i | Ax > 5.5) are conducted. The one with the largest conditional proba-
bility for all the values of the attribute is kept and comphvéth those conditional
probabilities from the remaining attributes.

Jmax-Pruning

2.3 J-pruning

As mentioned in the introduction, classifiers are genenailyned to prevent them
from overfitting. Pruning methods can be divided into tweegatries pre-pruning
andpost-pruning Post-pruning is applied to the classifier after it has beended
whereas pre-pruning is applied during the rule inductiarcpss. For Prism algo-
rithms only one pruning method has been developed sdfaruning[3], a pre-
pruning method based on the J-measure [11], a measure fiofohmation content
of a rule.J-pruningcan also be applied to decision tree induction algorithnts an
has shown good results on both kinds of algorithms [3]. As atentioned in the
introduction J-pruninghas found recent popularity in [12], as it reduces the number
of rules and rule terms induced considerably and thus isesethe computational
efficiency.

According to [11] the theoretical average information @mtof a rule of the
formIF Y =y THEN X = xcan be measured in bits and is denoted ¥, Y=y)

JXY =y)=py)- j(X;Y=y) (1)

As shown in equation (1)(X;Y =y) is essentially a product gd(y), the prob-
ability with which the left hand side of the rule will occumé j(X;Y =y) which
is called the j-measure (with a lower case j) and measuregdbdness-of-fit of a
rule. The j-measure, also called ttr@ss-entropydefined in equation (2):

106 =) = pix1y) toge(BT + 1 pixi) o B

For a more detailed description of the J-measure Smyth'ergdfi] is recom-
mended. Bramer’s essential interpretation of the J-meaisuthat if a rule has a
high J-value then it also is likely to have a high predicticewracy [3]. Hence the
J-value is used as an indicator of whether appending furtherterms is likely to
improve arule’s predictive accuracy or lower it due to ovwgnfy. The J-value of the
rule may go up or down when appending rule terms, also it magtayen and up
again. However it is possible to calculate the maximum Jyéthat the rule with its
current terms might maximally achieve if additional termsrevadded. This upper
bound cannot of course be exceeded but its value is not reedgschievable.

Bramer’s basicl-pruningis applied to Prism by calculating the J-value of the
rule before the induction of a new rule term and the J-valagttie rule would have
after a newly induced rule term is appended. If the J-val@esap then the rule term
is appended. In the case where the J-value goes down, themmés not appended
and a test is applied to determine whether the majority ad@iske instances that
are covered by the rule is also the TC. If the majority claghésTC then the rule
is truncated and kept and all instances in the current suthgbe training set are
treated as if all instances belong the TC. If the majoritgsls not the TC, then the
rule is discarded and the clash resolution described in@e2t1 is invoked.

)

Frederic Stahl and Max Bramer

3 Variation of J-pruning

In general there is very little work on pruning methods far Brism family of algo-
rithms. Bramer'sl-pruningin the Inducer software seems to be the only pruning fa-
cility developed for Prism algorithms. This section critég the initial-pruningfa-
cility and outlinesImax-pruninga variation that makes further use of the J-measure.

3.1 Critique of J-pruning

Even thoughl-pruningdescribed in Section 2.3 achieves good results regarding th
overfitting of Prism, it does not seem to exploit the J-measarits full potential.
The reason is that even if the new rule term decreases thkig-\ifiis possible
that the J-value increases again when adding further rahest¢12]. If the rule

is truncated as soon as the J-value is decreased it may neghk opposite of
overfitting, an over generalised rule with a lower predietaccuracy. The relatively
good results fod-pruningachieved in [3] could be explained by the assumption that
it does not happen very often that the J-value decreaseshandricreases again.
However, how often this happens will be examined empinydallSection 4.

3.2 Jmax-pruning

According to [11], an upper bound for the J-measure for a cale be calculated
using equation (3):

= P(Y)- max{ p(x|Y)-log(7). (1 x|) loga(L | 1=p(X)} (3)

If the actual J-value of the rule currently being generagethtby term matches
the maximum possible J-valud{zy) it is an absolute signal to stop the induction of
further rule terms.

A concrete example is used to show how the J-values of a raléeeelop. The
example used a dataset extracted from the UCI repositagdiibean dataset [1].
Here we induce rules using our own implementation of Pris@Wathout anyJ-
pruning The original dataset has been converted to a training s gast set where
the training set comprises 80% of the data instances. Ther@Rt induced is:

IF (temp = norm) AND (same-Ist-sev-yrs = whole-field) ANDofzhist =
same-Ist-two-yrs) THEN CLASS = frog-eye-leaf-spot

Jmax-Pruning

This is a perfectly reasonable rule with a J-value of 0.005%8vever looking
at the development of the J-values after each rule term ajggedraws a different
picture:

First Term
IF (temp = norm) THEN CLASS = frog-eye-leaf-spot
(J-value = 0.00113]nax= 0.02315)

Here the rule has J-value of 0.00113 after the first rule teasideen appended.
The J-value for the complete rule (0.00578) is larger tharctirrent J-value, which
is to be expected as the rule is not fully specialised yet erib.

Second Term

IF (temp = norm) AND (same-Ist-sev-yrs = whole-field) THENASS =
frog-eye-leaf-spot

(J-value = 0.00032Imax= 0.01157)

Now the J-value is decreased to 0.00032 &ngto 0.01157. Herd-pruningas
described in Section 2.3 would stop inducing further rutente the finished rule
would be

IF (temp = norm) THEN CLASS = frog-eye-leaf-spot

with a J-value of 0.00113. However looking at the valudgfy, after the second
rule term has been appended, it can be seen that it is stilehifpan the previous
J-value for appending the first rule term. Thus it is still gibke that the J-value may
increase again above the so far highest J-value of 0.004d8cing the next rule
term leads to:

Third Term

IF (temp = norm) AND (same-Ist-sev-yrs = whole-field) ANDofzhist =
same-Ist-two-yrs) THEN CLASS = frog-eye-leaf-spot

(J-value = 0.00578]nax= 0.00578)

In this case the rule was finished after the appending of tiné thle term as
it only covered examples of the TC. However, the interespag is that the J-
value increased again by appending the third rule term a figct the highest
J-value obtained. Using Bramer’s original method wouldeéhtuncated the rule
too early leading to an overall average information contér@.00113 instead of
0.00578. The J-value and tldenaxvalue are rounded to five digits after the deci-
mal point and appear identical but are actually slightljyed#nt. Looking at more

Frederic Stahl and Max Bramer

digits the values are in fact for the J-value 0.005787398938019 and for th@max
0.005787395266794598. In this case no further rule termbeadded to the left-
hand side of the rule as the current subset of the trainingrdgtcontains instances
of the TC, but if this were not the case it would still not be thevhile to add addi-
tional terms as the J-value is so closemoax

Overall this observation strongly suggests that pruniegthe as soon as the J-
value decreases does not fully exploit the J-measure’sipateT his work suggests
that J-pruningcould be improved by inducing the maximum number of possible
rule terms until the current subset cannot be broken dowthéuror the actual J-
value is equal to or within a few percentdrhax As a rule is generated all the terms
are labelled with the actual J-value of the rule after appenthis particular rule
term. The partial rule for which the largest rule J-value walkulated would then
be identified and all rule terms appended afterwards tredcatith clash handling
as described in Section 2.1 invoked for the truncated ru2. We call this new
pre-pruning methodmax-pruning

4 Evaluation of Jmax-pruning

The datasets used have been retrieved from the UCI reppflfoilEach dataset is
divided into a test set holding 20% of the instances and aitrgiset holding the
remaining 80% of the instances.

Table 1 shows the number of rules induced per training settlamdchieved
accuracy on the test set using PrismTCS wighruningas described in Section 2.3
andJmax-pruningas proposed in Section 3.2.

What is also listed in Table 1 as ‘J-value recovers’, is thenber of times the
J-value decreased and eventually increased again whefuliysxpanding the rule
and then pruning it usingmax-pruningUsing the originall-pruningas described
in Section 2.3 would not detect these J-value recoveriedeadito a rule with a
lower J-value and thus lower information content than itldgossibly achieve.

What can be seen is that in all casksax-pruningperforms either better than
or produces the same accuracylgsruning In fact seven timedmax-pruningoro-
duced a better result thdrpruningand nine times it produced the same accuracy as
J-pruning Taking a closer look in the rule sets that have been prodincéxd nine
cases for which the accuracies for both pruning methodsarsame revealed that
identical rule sets were produced in seven out of these r@sesc The two excep-
tions are the ‘Car Evolution’ and ‘ecoli’ datasets, howewvethese two exceptions
the classification accuracy was the same usimgx-pruningor J-pruning In the
cases where there are identical classifiers there were atué-kecoveries present.
In Section 3.1 we stated that the good performancemiuning[3], despite its ten-
dency to generalisation, can be explained by the fact tleaethre not many J-value
recoveries in the datasets and thus the tendency to overaiieagon is low. Look-
ing into the last column of table 1 we can see the number ofukev@coveries. In
seven cases there are none, thus there is no potential fogy@weralisation by using

Jmax-Pruning

Table 1 Comparison ofl-pruningandJmax-pruningon PrismTCS.

Dataset [Number of RulefAccuracy (%)Number of RulefAccuracy (%}J-value recovels
J-Pruning J-max Pruning

monk1 4 79 12 86 4
monk3 3 98 3 98 0
vote 3 94 3 94 0
genetics 8 70 8 70 0
contact
lenses 4 95| 4 95| 0
breast
cancer 24 96 24 96 0
soybean 39 88 43 89 4
australian
credit 20 89 20 89 0
diabetes 29 75 31 76 1
Crx 18 83 18] 83 0
segmentatio 83 79 86| 82 2
ecoli 23 78 26| 78 3
Balance
Scale 10 72, 36 74 21
Car
Evaluation 4 76 4 76 1
Contraceptive
Method
Choice 19 44 28| 45 8
Optical
Recognition
of
handwritten
Digits 45 57 46 58 6

J-pruningand for the remaining datasets there is only a very small muwial-value
recoveries with the exception of the ‘Balanced Scale’ datés which a 2% higher
accuracy has been retrieved by usimgax-pruningcompared withJ-pruning

Loosely speaking, if there are no J-value recoveries pteieen Prism algo-
rithms withJmax-pruningvill produce identical classifiers to Prism algorithms with
J-pruning However, if there are J-value recoveries, it is likely tResm algorithms
with Jmax-pruningvill produce classifiers that achieve a better accuracy Eram
algorithms withJ-pruning

What can also be read from Table 1 is the number of rules irtiuicall cases in
which both pruning methods produced the same accuracyabsfiers and thus the
number of rules were identical. However in the cases wherd-balue recovered,
then the number of rules induced willmax-pruningwas larger than the number
of rules induced withJ-pruning This can be explained by the fact that in the case
of a J-value recovery the rule gets specialised further wigm normalJ-pruning
by adding more rule terms while still avoiding overfittingdding more rule terms
results in the rule covering fewer training instances frém turrent subset. This
in turn results in that before the next iteration for the nexé less instances are

Frederic Stahl and Max Bramer

deleted from the training set, which potentially generatese rules, assuming that
the larger the number of training instances the more ruleg@anerated.

5 Ongoing Work
5.1 J-PrismTCS

Annother possible variation of PrismTCS that is curreniiynlg implemented is
a version that is solely based on the J-measure. Rule termklwe induced by
generating all possible categorical and continuous rutageand selecting the one
that results in the highest J-value for the current ruleciadtof selecting the one
with the largest conditional probability. Again the samepgting criterion as for
standard PrismTCS could be used, which is that all instaotctee current subset
of the training set belong to the same class. We call thisatiari of PrismTCS,
J-PrismTCS

5.2 Jmax-Pruning for TDIDT

J-pruninghas also been integrated into the TDIDT approach as a prafy fa-
cility and achieved a higher classification accuracy thatDiDwithout J-pruning
[3]. Encouraged by the good results outlined in Section £tkiere achieved with
Jmax-pruningn PrismTCS, we are currently developing a versiodrmfx-pruning
for TDIDT algorithms. The following pseudo code describles basic TDIDT al-
gorithm.
IF Al instances in the training set belong to the
sane cl ass
THEN return value of this class
ELSE (a) Select attribute Ato split on
(b) Divide instances in the training set
into subsets, one for each value of A
(c) Return a tree with a branch for each non
enpty subset, each branch having a decendent

subtree or a class val ue produced by applying
the algorithmrecursively

The basic approach @kpruningin TDIDT is to prune a branch in the tree as
soon as a node is generated at which the J-value is less tlitarpatent node [3].
However performing thd-pruningis more complicated than for Prism algorithms
as illustrated in the example below.

Figure 1 illustrates a possible tree which is used to exglggruningandJmax-
pruningfor TDIDT. The nodes labelled with ‘?’ are placeholders faspible sub-
trees. Now assuming that a depth first approach is used arwittent node being
expanded is node ‘D’. In this cagepruningwould take the incomplete rule

Jmax-Pruning

Class 1

Fig. 1 Example of a decision tree fdrpruning

(1) IF (A=0) AND (B=0) AND (C=0)...
the complete rule
(2) IF (A=0) AND (B=0) AND (C=0) AND (D=0) THEN class = 1
and the possible incomplete rule
(3) IF (A=0) AND (B=0) AND (C=0) AND (D=1)...

into account. Rule (2) is completed as all instances coomas$po the same clas-
sification which is (class = 1). However instances covereéhbgmplete rule (3)
correspond in this case to more than one classification.

J-pruningnow compares the J-values of the incomplete rules (1) andf@)e
J-value of rule (3) is less than the J-value of rule (1) thée (8) is completed by
assigning it to the majority class of the correspondinganses. The complication is
that the calculation of the J-value of a rule requires us mkits right-hand side. In
the case of a complete (non-truncated) rule, such as ruléh{&)s straightforward,
but how can the J-value be calculated for an incomplete rule?

The method described by Bramer [3] is to imagine all possitternative ways of
completing the incomplete rule with right-hand sides ctdsslass=2 etc., calculate
the J-value of each such (completed) rule and take the laoféise values as the
estimate of the J-value of the incomplete rule.

In a similar way to J-pruning for Prism algorithms, J-prunfior TDIDT in its
current form does not necessarily exploit the full potdmifahe J-measure as again
it is possible that if rule (3) were not truncated at the nadelled ‘?’ but expanded
to complete the decision tree in the usual way the J-valugdiore or possibly all of
the resulting complete branches might be at least as hidfeakalue at node D.

Frederic Stahl and Max Bramer

Applying the idea of Jmax-pruning rather than J-pruning@dOT may increase
the classification accuracy. This could be done by devetpthia complete decision
tree and labelling each internal node with a J-value eséithas described above.
Each branch (corresponding to a completed rule) can therubedted at the node
that gives the highest of the estimated J-values, in a simiky to the method
described in Section 3.2, with each truncated rule assigm#éte majority class for
the corresponding set of instances.

This method appears attractive but there is a possibleg@mllsing the example
from figure 1 and assuming that the estimated J-value of l)les @reater than the
estimated J-value of rule (3) and that the majority clashefihstances at node D
is ‘1’, then rule (1) would be truncated at node D and rule (8uld cease to exist,
giving two completed rules in this subtree:

(1) IF (A=0) AND (B=0) AND (C=0) THEN class = 1
and
(2) IF (A=0) AND (B=0) AND (C=0) AND (D=0) THEN class = 1

Both rules are illustrated in figure 2. Rule (2) is now redurtdhi is just a special
case of rule (1), with the same classification, and can beuwdisd.

Majority
Class 1

Fig. 2 Example of a decision tree with a redundant rule

Jmax-Pruning

Now suppose instead that in the above the majority classdhitances at node
(1) were ‘2’ (rather than ‘1’). In this case a different pictiwould emerge, with rules
(1) and (2) having different classifications. How likelydtsituation is to occur in
practice and how it should best be handled if it does both mretnébe determined.

6 Conclusions

Section 2 discussed the Prism family of algorithms as anrelt&re approach to
TDIDT to the induction of classification rules. The Prism fgnof algorithms was
highlighted and-pruning a pre-pruning facility for Prism algorithms based on the
J-measure, which describes the information content ofeg wis introduced. Sec-
tion 3 criticisedJ-pruningas it does not fully exploit the potential of the J-measure.
The J-value of a rule may go up or down when rule terms are ajgokto the rule.
J-pruningtruncates a rule as soon as the J-value decreases even if itecwver
(increase again). The proposéchax-pruningexploits the possibility of a J-value
recovery and achieves in some cases, examined in Secticgttér besults com-
pared withJ-pruning but in every case examinginax-pruningachieved at least
the same or a higher classification accuracy comparediagttuning

The ongoing work comprises the development of J-PrismTC&eraion of
PrismTCS that is solely based on the J-measure, by usingdtasd a rule term
selection metric as discussed in Section 5.1. Furthernm@r@mngoing work com-
prises the development of a TDIDT algorithm that incorpesdmax-pruningas
discussed in Section 5.2.

References

1. CL Blake and C J Merz. UCI repository of machine learnintaases. Technical report,
University of California, Irvine, Department of Informati and Computer Sciences, 1998.

2. M A Bramer. Automatic induction of classification rulesift examples using N-Prism.
In Research and Development in Intelligent Systems pafies 99-121, Cambridge, 2000.
Springer-Verlag.

3. M A Bramer. An information-theoretic approach to the prening of classification rules. In
B Neumann M Musen and R Studer, editdrgglligent Information Processingpages 201—
212. Kluwer, 2002.

4. M A Bramer. Inducer: a public domain workbench for dataingn International Journal of
Systems Scienc6(14):909-919, 2005.

5. J. Cendrowska. PRISM: an algorithm for inducing moduldes. International Journal of
Man-Machine Studie®7(4):349-370, 1987.

6. F Esposito, D Malerba, and G Semeraro. A comparative sisabf methods for pruning
decision treeslEEE Transactions on Pattern Analysis and Machine Inteltige 19(5):476—
491, 1997.

7. E B Hunt, P J Stone, and J Marifexperiments in inductian Academic Press, New York,
1966.

8. R Kerber. Chimerge: Discretization of numeric attrilsutin AAAI, pages 123-128, 1992.

9.

10.

11.

12.
13.

14.

Frederic Stahl and Max Bramer

R S Michalski. On the Quasi-Minimal solution of the gehe@vering problem. IrProceed-
ings of the Fifth International Symposium on Informatiorm&&ssing pages 125-128, Bled,
Yugoslavia, 1969.

R J QuinlanC4.5: programs for machine learning/lorgan Kaufmann, 1993.

P. Smyth and R M Goodman. An information theoretic apgho@ rule induction from
databasesTransactions on Knowledge and Data Engineeyif@):301-316, 1992.

F T Stahl.Parallel Rule Induction PhD thesis, University of Portsmouth, 2009.

F T Stahl, M A Bramer, and M Adda. PMCRI: A parallel modutassification rule induction
framework. INMLDM, pages 148-162. Springer, 2009.

| H Witten and F EibeData Mining: Practical Machine Learning Tools and Techréguwith
Java ImplementationsMorgan Kaufmann, 1999.

